Asymptotic Force Control of Hydraulic Actuators With Friction: Theory and Experiments

Author(s):  
P. Sekhavat ◽  
N. Sepehri ◽  
Q. Wu

This paper documents the development, theoretical analysis and experimental evaluation of a Lyapunov-based nonlinear control scheme for asymptotic force regulation of hydraulic actuators with friction. The complete discontinuous model of actuator friction, servo-valve dynamics, and nonlinear hydraulic functions are all included in the theoretical solution and stability analyses of the resulting nonsmooth system. The frictionless contact force is modeled as a linear stiffness. Filippov’s solution theory and the extension of LaSalle’s invariance principle to nonsmooth systems are employed to prove the asymptotic convergence of the system trajectories towards equilibria. Experiments complement the theoretical analysis in providing a solid foundation for implementation of the proposed control scheme for asymptotic force regulation of the hydraulic actuators despite friction effects.

2004 ◽  
Vol 127 (2) ◽  
pp. 197-205 ◽  
Author(s):  
P. Sekhavat ◽  
Q. Wu ◽  
N. Sepehri

Every manipulator contact task that begins with a transition from free motion to constraint motion may exhibit impacts that could drive the system unstable. Stabilization of manipulators during this transition is, therefore, an important issue in contact task control design. This paper presents a discontinuous controller to regulate the transition mode in hydraulic actuators. The controller, upon sensing a nonzero force, positions the actuator at the location where the force was sensed, thus, exerting minimal force on a nonmoving environment. The scheme does not require force or velocity feedback as they are difficult to measure throughout the short transition phase. Also, no knowledge about the environment or hydraulic parameters is required for control action. Due to the discontinuity of the control law, the control system is nonsmooth. First, the existence, continuation and uniqueness of Filippov’s solution to the system are proven. Next, the extension of Lyapunov stability theory to nonsmooth systems is employed to guarantee the global asymptotic convergence of the entire system’s state towards the equilibrium point. Complete dynamic characteristics of hydraulic functions and Hertz-type contact model are included in the stability analysis. Experiments are conducted to verify the practicality and effectiveness of the proposed controller. They include actuator collisions with hard and soft environments and with various approach velocities.


2021 ◽  
Vol 158 ◽  
pp. 107769
Author(s):  
Wenxiang Deng ◽  
Jianyong Yao ◽  
Yaoyao Wang ◽  
Xiaowei Yang ◽  
Jiuhui Chen

Robotica ◽  
2005 ◽  
Vol 24 (2) ◽  
pp. 205-210 ◽  
Author(s):  
An-Chyau Huang ◽  
Shi-Chang Wu ◽  
Wen-Fa Ting

In this paper, an adaptive control scheme is proposed for an n-link rigid robot manipulator without using the regressor. The robot is firstly modeled as a set of second-order nonlinear differential equations with the assumption that all of the matrices in that model are unavailable. Since these matrices are time-varying and their variation bounds are not given, traditional adaptive or robust designs do not apply. The function approximation technique (FAT) is used here to represent uncertainties in some finite linear combinations of orthonormal basis. The dynamics of the output tracking can thus be proved to be a stable first order filter driven by function approximation errors. Using the Lyapunov stability theory, a set of update laws is derived to give closed loop stability with proper tracking performance. Experiments are also performed on a 2-D robot to test the efficacy of the proposed scheme.


Author(s):  
Kurosh Zarei-nia ◽  
Nariman Sepehri

A control scheme for teleoperation of hydraulic actuators, using a haptic device, is developed and experimentally evaluated in this paper. In the control laws, the position error between the displacement of the haptic device and the hydraulic actuator movement is used at both master and slave sides to maintain good position tracking at the actuator side while providing a haptic force to the operator. Lyapunov’s stability theory and LaSalle’s invariant set theorems are employed to prove the asymptotic stability of the system. It is shown that beside stability, the system performs well in terms of position tracking of the hydraulic actuator and providing a feel of telepresence to the operator. Proposed controller only needs system’s pressures and displacements that are easy to obtain via on-line measurements. Additionally, the controller does not need any information about the parameters of the system. These characteristics make the controller very attractive from the implementation view point.


Author(s):  
P. Sekhavat ◽  
N. Sepehri ◽  
Q. Wu

The focus of this work is stabilization of hydraulic actuators during the transition from free motion to constraint motion and regulating the intermediate impacts that could drive the system unstable. In our past research, we introduced Lyapunov-based nonlinear control schemes capable of fulfilling the above goal by resting the implement on the surface of the environment before starting the sustained-contact motion. The hydraulic actuator’s stick-slip friction effect was, however, either not included in the analysis or not compensated by the control action. In this paper, the application of our previously introduced friction compensating position control scheme is extended to impact regulation of a hydraulic actuator. Theoretical solution and stability analyses as well as actual experiments prove that such control scheme is also effective for asymptotic impact control (with no position steady-state error) of hydraulic actuators in the presence of actuator’s dry friction.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5616
Author(s):  
Massimiliano Luna ◽  
Antonino Sferlazza ◽  
Angelo Accetta ◽  
Maria Carmela Di Piazza ◽  
Giuseppe La Tona ◽  
...  

Bidirectional DC/DC converters such as the Split-pi can be used to integrate an energy storage system (ESS) into a DC microgrid providing manifold benefits. However, this integration deserves careful design because the ESS converter must behave like a stiff voltage generator, a non-stiff voltage generator, or a current generator depending on the microgrid configuration. Part I of this work presented a comprehensive theoretical analysis of the Split-pi used as an ESS converter in all the possible DC microgrid scenarios. Five typical microgrid scenarios were identified. Each of them required a specific state-space model of the Split-pi and a suitable control scheme. The present paper completes the study validating the theoretical analysis based on simulations and experimental tests. The chosen case study encompassed a 48 V, 750 W storage system interfaced with a 180 V DC microgrid using a Split-pi converter. It can represent a reduced-power prototype of terrestrial and marine microgrids. A prototypal Split-pi converter was realized in the lab, and several experimental tests were performed to assess the performance in each scenario. The results obtained from the experimental tests were coherent with the simulations and validated the study.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Tao Liu ◽  
Yuli Hu ◽  
Hui Xu ◽  
Mohamed El Ghami

Autonomous underwater vehicles (AUVs) are important and useful tool platforms in exploring and utilizing ocean resource. However, the effect of control surfaces would decrease even invalid complete in this condition, and it is very hard for conventional AUVs to perform detailed missions at a low forward speed. Therefore, solving this problem of AUVs becomes particularly important to increase the application scope of AUVs. In this paper, we present a design scheme for the vectored thruster AUV based on 3RPS parallel manipulator, which is a kind of parallel manipulator and has advantages of compact structure and reliable performance. To study the performance and characteristics of the proposed thrust-vectoring mechanism, a series of works about corresponding kinematic and dynamic analysis have been performed through the theoretical analysis and numerical simulation. In the part of kinematics, the inverse, forward kinematics, and workspace analysis of the thrust-vectoring mechanism is presented, and the numerical simulations are accomplished to prove the feasibility and effectiveness of this design in AUVs. In order to further verify feasibility of the thrust-vectoring mechanism, based on the considerations of various affecting factors, a dynamic model of the designed thrust-vectoring mechanism is established according to theoretical analysis, and the driving forces of the linear actuator are presented through a series of numerical simulations. In addition, a control scheme based on PID algorithm is proposed for the designed vectored thruster with considering various affecting factors and the application environment. Meanwhile, the control scheme is also established and verified in MATLAB Simscape Mutibody. A series of numerical simulations of the thrust-vectoring mechanism prove the feasibility of the vectored thruster. According to equipping the designed vectored thruster, the AUVs can overcome the limit of weakening the control ability at zero or low forward speeds, and this improvement also expands the application of it, which has been scaled greatly.


Sign in / Sign up

Export Citation Format

Share Document