Effect of Blade Thickness on High Frequency Gust Response

Author(s):  
Peter D. Lysak

Turbomachinery rotor blades experience gust loading due to both inflow turbulence and circumferential variation in the mean velocity. The unsteady lift forces that result from these velocity disturbances can be a source of unwanted vibration and radiated noise. For incompressible flows, the blade gust response is often modeled using the well-known Sears function, which acts as a transfer function between a sinusoidal component of the gust and the fluctuating lift. However, the Sears function has a relatively slow high frequency roll-off and overpredicts the unsteady lift when the gust wavelength becomes much smaller than the blade chord. A more accurate model can be obtained by including the effect of blade thickness, which causes the gust to become distorted as it approaches the leading edge. This distortion results in attenuation of the higher-frequency components of the gust near the leading edge, which subsequently leads to reduced unsteady lift. In this paper, a model for the thickness effect is developed based on rapid distortion theory. Numerical calculations are made for a step-function gust encountering an elliptical leading edge with several thickness-to-chord ratios. The unsteady lift is calculated in the time domain, and a Fourier transform is used to obtain the frequency response. The results indicate that the gust response of a thick blade can be closely approximated by modifying the Sears function to include an exponential decay factor based on the thickness.

Author(s):  
Donghui Zhang ◽  
Jean-Luc Di Liberti ◽  
Michael Cave

A numerical study of the effect of the blade thickness on centrifugal impeller slip factor is presented in this paper. The CFD results show that generally the slip factor decreases as the blade thickness increases. Changing the thickness at different locations has different effects on the slip factor. The shroud side blade thickness has more effect on the impeller slip factor than the hub side blade thickness. In the flow direction, the blade thickness at 50% meridional distance is the major factor affecting the slip factor. The leading edge thickness has little effect on slip factor. There is an optimum thickness at the trailing edge for the maximum slip factor. For this impeller, the hub side thickness ratio of 0.5 between the trailing edge and the middle of the impeller gives the highest value of the slip factor, while the ratio of 0.25 at shroud side gives the highest value of the slip factor. A blockage factor is added into the slip factor model to include the aerodynamic blockage effect on the slip factor. The model explains the phenomena observed in the CFD results and the test data very well.


Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 96
Author(s):  
Abdallah Samad ◽  
Eric Villeneuve ◽  
Caroline Blackburn ◽  
François Morency ◽  
Christophe Volat

Successful icing/de-icing simulations for rotorcraft require a good prediction of the convective heat transfer on the blade’s surface. Rotorcraft icing is an unwanted phenomenon that is known to cause flight cancelations, loss of rotor performance and severe vibrations that may have disastrous and deadly consequences. Following a series of experiments carried out at the Anti-icing Materials International Laboratory (AMIL), this paper provides heat transfer measurements on heated rotor blades, under both the anti-icing and de-icing modes in terms of the Nusselt Number (Nu). The objective is to develop correlations for the Nu in the presence of (1) an ice layer on the blades (NuIce) and (2) liquid water content (LWC) in the freestream with no ice (NuWet). For the sake of comparison, the NuWet and the NuIce are compared to heat transfer values in dry runs (NuDry). Measurements are reported on the nose of the blade-leading edge, for three rotor speeds (Ω) = 500, 900 and 1000 RPM; a pitch angle (θ) = 6°; and three different radial positions (r/R), r/R = 0.6, 0.75 and 0.95. The de-icing tests are performed twice, once for a glaze ice accretion and another time for rime ice. Results indicate that the NuDry and the NuWet directly increased with V∝, r/R or Ω, mainly due to an increase in the Reynolds number (Re). Measurements indicate that the NuWet to NuDry ratio was always larger than 1 as a direct result of the water spray addition. NuIce behavior was different and was largely affected by the ice thickness (tice) on the blade. However, the ice acted as insulation on the blade surface and the NuIce to NuDry ratio was always less than 1, thus minimizing the effect of convection. Four correlations are then proposed for the NuDry, the NuWet and the NuIce, with an average error between 3.61% and 12.41%. The NuDry correlation satisfies what is expected from heat transfer near the leading edge of an airfoil, where the NuDry correlates well with Re0.52.


Author(s):  
Özhan H. Turgut ◽  
Cengiz Camcı

Three different ways are employed in the present paper to reduce the secondary flow related total pressure loss. These are nonaxisymmetric endwall contouring, leading edge (LE) fillet, and the combination of these two approaches. Experimental investigation and computational simulations are applied for the performance assessments. The experiments are carried out in the Axial Flow Turbine Research Facility (AFTRF) having a diameter of 91.66cm. The NGV exit flow structure was examined under the influence of a 29 bladed high pressure turbine rotor assembly operating at 1300 rpm. For the experimental measurement comparison, a reference Flat Insert endwall is installed in the nozzle guide vane (NGV) passage. It has a constant thickness with a cylindrical surface and is manufactured by a stereolithography (SLA) method. Four different LE fillets are designed, and they are attached to both cylindrical Flat Insert and the contoured endwall. Total pressure measurements are taken at rotor inlet plane with Kiel probe. The probe traversing is completed with one vane pitch and from 8% to 38% span. For one of the designs, area averaged loss is reduced by 15.06%. The simulation estimated this reduction as 7.11%. Computational evaluation is performed with the rotating domain and the rim seal flow between the NGV and the rotor blades. The most effective design reduced the mass averaged loss by 1.28% over the whole passage at the NGV exit.


2021 ◽  
pp. 1-35
Author(s):  
Rick Dehner ◽  
Pranav Sriganesh ◽  
Ahmet Selamet ◽  
Keith Miazgowicz

Abstract The present study focuses on the acoustics of a turbocharger centrifugal compressor from a spark-ignition internal combustion engine. Whoosh noise is typically the primary concern for this type of compressor, which is loosely characterized by broadband sound elevation in the 4 to 13 kHz range. To identify the generation mechanism of broadband whoosh noise, the present study combines three approaches: three-dimensional (3D) computational fluid dynamics (CFD) predictions, experiments, and modal decomposition of 3D CFD results. After establishing the accuracy of predictions, flow structures and time-resolved pressures are closely examined in the vicinity of the main blade leading edge. This reveals the presence of rotating instabilities that may interact with the rotor blades to generate noise. An azimuthal modal decomposition is performed on the predicted pressure field to determine the number of cells and the frequency content of these rotating instabilities. The strength of the rotating instabilities and the frequency range in which noise is generated as a consequence of the rotor-rotating instability interaction, is found to correspond well with the qualitative trend of the whoosh noise that is measured several duct diameters upstream of the rotor blades. The variation of whoosh frequency range between low and high rotational speeds is interpreted through this analysis. It is also found that the whoosh noise primarily propagates along the duct as acoustic azimuthal modes. Hence, the inlet duct diameter, which governs the cut-off frequency for multi-dimensional acoustic modes, determines the lower frequency bound of the broadband noise.


2016 ◽  
Vol 11 (1) ◽  
pp. 23-33
Author(s):  
Maxim Golubev ◽  
Andrey Shmakov

The work presents the results of application of panoramic interferential technique which is based on elastic layers (sensors) usage to obtain pressure distribution on the flat plate having sharp leading edge. Experiments were done in supersonic wind tunnel at Mach number M = 4. Sensitivity and response time are shown to be enough to register pressure pulsation against standing and traveling sensor surface waves. Applying high-frequency image acquiring is demonstrated to make possible to distinguish at visualization images high-speed disturbances propagating in the boundary layer from low-speed surface waves


1975 ◽  
Vol 70 (3) ◽  
pp. 573-593 ◽  
Author(s):  
W. H. Schofield

The response of turbulent boundary layers to sudden changes in surface roughness under adverse-pressure-gradient conditions has been studied experimentally. The roughness used was in the ‘d’ type array of Perry, Schofield & Joubert (1969). Two cases of a rough-to-smooth change in surface roughness were considered in the same arbitrary adverse pressure gradient. The two cases differed in the distance of the surface discontinuity from the leading edge and gave two sets of flow conditions for the establishment and growth of the internal layer which develops downstream from a change in surface roughness. These conditions were in turn different from those in the zero-pressure-gradient experiments of Antonia & Luxton. The results suggest that the growth of the new internal layer depends solely on the new conditions at the wall and scales with the local roughness length of that wall. Mean velocity profiles in the region after the step change in roughness were accurately described by Coles’ law of the wall-law of the wake combination, which contrasts with the zero-pressure-gradient results of Antonia & Luxton. The skin-friction coefficient after the step change in roughness did not overshoot the equilibrium distribution but made a slow adjustment downstream of the step. Comparisons of mean profiles indicate that similar defect profile shapes are produced in layers with arbitrary adverse pressure gradients at positions where the values of Clauser's equilibrium parameter β (= δ*τ−10dp/dx) are similar, provided that the pressure-gradient history and local values of the pressure gradient are also similar.


2018 ◽  
Vol 857 ◽  
pp. 907-936 ◽  
Author(s):  
A. Cimarelli ◽  
A. Leonforte ◽  
D. Angeli

The separating and reattaching flows and the wake of a finite rectangular plate are studied by means of direct numerical simulation data. The large amount of information provided by the numerical approach is exploited here to address the multi-scale features of the flow and to assess the self-sustaining mechanisms that form the basis of the main unsteadinesses of the flows. We first analyse the statistically dominant flow structures by means of three-dimensional spatial correlation functions. The developed flow is found to be statistically dominated by quasi-streamwise vortices and streamwise velocity streaks as a result of flow motions induced by hairpin-like structures. On the other hand, the reverse flow within the separated region is found to be characterized by spanwise vortices. We then study the spectral properties of the flow. Given the strongly inhomogeneous nature of the flow, the spectral analysis has been conducted along two selected streamtraces of the mean velocity field. This approach allows us to study the spectral evolution of the flow along its paths. Two well-separated characteristic scales are identified in the near-wall reverse flow and in the leading-edge shear layer. The first is recognized to represent trains of small-scale structures triggering the leading-edge shear layer, whereas the second is found to be related to a very large-scale phenomenon that embraces the entire flow field. A picture of the self-sustaining mechanisms of the flow is then derived. It is shown that very-large-scale fluctuations of the pressure field alternate between promoting and suppressing the reverse flow within the separation region. Driven by these large-scale dynamics, packages of small-scale motions trigger the leading-edge shear layers, which in turn created them, alternating in the top and bottom sides of the rectangular plate with a relatively long period of inversion, thus closing the self-sustaining cycle.


Author(s):  
S Wattananusorn

This paper features the possibility of averaging space-dependent flow fields using a coupling factor that links the equations of momentum and energy. The scheme is applied to the mean velocity, which is derived straightforwardly through the continuity equation. It creates a small imbalance, which can be eliminated later completely. Smaller discrepancies in the integration of systems of balance equations for inhomogeneous flow are the consequence. The procedure is verified on various flow patterns, and comparisons are made with other conventional methods and with some available experimental data. Despite investigating only numerical examples of incompressible flows here, the technique, in principle, is capable of dealing with compressible flows as well. Furthermore, the proposed method discards some variables required in other techniques while still providing useful and acceptable results for practical problems.


2022 ◽  
Author(s):  
Ryley R. Colpitts ◽  
Dillon Hesketh ◽  
Ruben E. Perez

Sign in / Sign up

Export Citation Format

Share Document