Development of Carbon-Nanotube-Based Nanocomposite Strain Sensor

Author(s):  
Giang T. Pham ◽  
Young-Bin Park ◽  
Ben Wang

This paper presents the development of carbon-nanotube-based, polymer composite films that can be used as high-sensitivity strain sensors. The films were fabricated via either melt processing or solution casting of thermoplastic polymer matrices containing low concentrations of multi-walled carbon nanotubes. The electrical resistivities of the films were measured in situ using laboratory-designed fixtures and data acquisition system. The measured resistivities were correlated with the applied strains to evaluate the sensitivity of the nanocomposite film sensor. Various types of loading mode, including tension and flexure were considered. The paper suggests that conductive network formation, thus strain sensitivity of the conductive films, can be tailored by controlling nanotube loading, degree of nanotube dispersion, and film fabrication process. The developed sensors exhibited a wide range of sensitivity, the upper limit showing nearly an order of magnitude increase compared to conventional strain gages. Military and industrial applications of the sensitivity-tunable strain sensors are presented.

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Waris Obitayo ◽  
Tao Liu

The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.


2011 ◽  
Vol 22 (18) ◽  
pp. 2155-2159 ◽  
Author(s):  
Y. Miao ◽  
L. Chen ◽  
Y. Lin ◽  
R. Sammynaiken ◽  
W. J. Zhang

The use of carbon nanotubes (CNTs) for construction of sensors is promising. This is due to some unique characteristics of CNTs. In recent years, strain sensors built from CNT composite films have been developed; however, their low piezoresistive sensitivity (gauge factor (GF)) in in-plane strain detection is a concern compared with other strain sensors. This article reports an experimental discovery of the superior piezoresistive response of a CNT film that is free of surfactants, known as the pure CNT film. The mechanism for the high GF with the pure CNT film strain sensors is also discussed.


Nano Energy ◽  
2019 ◽  
Vol 66 ◽  
pp. 104134 ◽  
Author(s):  
Yina Yang ◽  
Zherui Cao ◽  
Peng He ◽  
Liangjing Shi ◽  
Guqiao Ding ◽  
...  

Materials ◽  
2003 ◽  
Author(s):  
Michael H. Santare ◽  
Wenzhong Tang ◽  
John E. Novotny ◽  
Suresh G. Advani

High-density polyethylene (HDPE) was used as the matrix material for a carbon nanotube (CNT) polymer composites. Multi-wall carbon nanotube composite films were fabricated using the melt processing method. Composite samples with 0%, 1%, 3% and 5% nanotube content by weight were tested. The mechanical properties of the films were measured by the small punch test and wear resistance was measured with a block-on-ring wear tester. Results show increases in the stiffness, peak load, work-to-failure and wear resistance with increasing nanotube content.


Author(s):  
N A Halliwell ◽  
G K Hargrave

Optical engineering uses research and development of laser technology, modern photonic detection/imaging systems and optical metrology for engineering applications. It has produced a wide range of processes and techniques from high-power laser material processing to high-sensitivity metrology and has applications in every industrial sector. Modern optical diagnostic techniques are providing new experimental and in situ data, which hitherto were considered to be unobtainable. Engineers are analysing these data in order to provide immediate design improvements in the performance of components. In addition, they use the data to refine theoretical/computer models of engineering processes, which in turn provide more accurate performance prediction. This paper introduces technology now available to the optical engineer and describes how it is being used to provide optical diagnostic techniques for both solid and fluid mechanics applications in industry. The gas industry has to deal with gas provision safely and efficiently from ‘drill bit to burner tip’ and has benefited significantly from optical engineering. Examples of optical diagnostic techniques and applications, which are used to improve this process, are described.


Nanoscale ◽  
2017 ◽  
Vol 9 (30) ◽  
pp. 10897-10905 ◽  
Author(s):  
Yangyang Xin ◽  
Jian Zhou ◽  
Xuezhu Xu ◽  
Gilles Lubineau

Sensors based on carbon nanotube papers with high crack density can attain ultrahigh sensitivity, high stretchability and high linearity.


Nanoscale ◽  
2018 ◽  
Vol 10 (28) ◽  
pp. 13599-13606 ◽  
Author(s):  
Binghao Liang ◽  
Zhiqiang Lin ◽  
Wenjun Chen ◽  
Zhongfu He ◽  
Jing Zhong ◽  
...  

A highly stretchable and sensitive strain sensor based on a gradient carbon nanotube was developed. The strain sensors show an unprecedented combination of both high sensitivity (gauge factor = 13.5) and ultra-stretchability (>550%).


2019 ◽  
Vol 7 (14) ◽  
pp. 4199-4209 ◽  
Author(s):  
Jiefeng Gao ◽  
Lisheng Wu ◽  
Zheng Guo ◽  
Jiye Li ◽  
Cong Xu ◽  
...  

It is desirable to develop strain sensors with large stretchability, high sensitivity, and good anti-corrosive properties, due to their promising applications in wearable electronics.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1077 ◽  
Author(s):  
Wei Xu ◽  
Tingting Yang ◽  
Feng Qin ◽  
Dongdong Gong ◽  
Yijia Du ◽  
...  

Flexible strain sensors have a wide range of applications in biomedical science, aerospace industry, portable devices, precise manufacturing, etc. However, the manufacturing processes of most flexible strain sensors previously reported have usually required high manufacturing costs and harsh experimental conditions. Besides, research interests are often focused on improving a single attribute parameter while ignoring others. This work aims to propose a simple method of manufacturing flexible graphene-based strain sensors with high sensitivity and fast response. Firstly, oxygen plasma treats the substrate to improve the interfacial interaction between graphene and the substrate, thereby improving device performance. The graphene solution is then sprayed using a soft PET mask to define a pattern for making the sensitive layer. This flexible strain sensor exhibits high sensitivity (gauge factor ~100 at 1% strain), fast response (response time: 400–700 μs), good stability (1000 cycles), and low overshoot (<5%) as well. Those processes used are compatible with a variety of complexly curved substrates and is expected to broaden the application of flexible strain sensors.


Sign in / Sign up

Export Citation Format

Share Document