Cost Effective Skyhook Control for Vibration Isolation Systems

Author(s):  
Xubin Song

Traditionally a skyhook control, widely applied to vibration control, requires two sensors to measure sprung mass acceleration and relative displacement, respectively. For the implementation, these two measurement signals are converted into velocities and then the damping control signal is decided and sent to controllable HH/SS dampers. In this paper, a one sensor based skyhook control policy is developed. The proposed control policy just needs one measurement signal, sprung mass acceleration, to estimate these two velocities for semiactive control. The new strategy is explained through a typical spring-mass system of a quarter-car model. But the effectiveness of the new control approach for vibration isolation is validated with ride control through simulation study of a 7-DOF full car suspension system with application of magneto-rheological (MR) dampers.

2013 ◽  
Vol 467 ◽  
pp. 410-415 ◽  
Author(s):  
Vladimir Smirnov ◽  
Vladimir Mondrus

The article deals with probability analysis for a vibration isolation system of sensitive equipment. Vibration isolation system is subjected to external base vibrations due to ambient oscillations (background noise). Considering Gauss distribution for ambient vibrations, we estimate the probability when the relative displacement of isolated mass will still be lower than the vibration criteria. The problem is solved in three-dimensional space, evolved by the system parameters damping and natural frequency. According to this probability distribution, the chance of exceeding vibration criteria for a vibration isolation system is evaluated and different vibration isolation systems are compared.


1977 ◽  
Vol 99 (1) ◽  
pp. 24-30
Author(s):  
J. A. Golinski

Vibration isolators of machines installed on ships are subject to both dynamic forces involved with the working of these machines and inertia forces resulting from the rolling of the ship. In order to illustrate this better, a solution of the vibration equation of a single mass system has been analyzed, the system being excited simultaneously by a dynamic force and a motion of foundation. It has been found that the larger the ratio of rotation speed is to natural frequency of vibration, the larger is the relative displacement of a machine mounted on vibration isolators. To obtain as small as possible a value of this ratio it might be necessary to use “hard” isolators, but such a solution is not one of the best, because forces transmitted to the foundation would then be larger than the dynamic forces causing the vibration of this machine. Thus the author recommends employing “soft” isolators, on condition, however, that the frequency ratio mentioned previously be chosen such that the elastic deformation of the isolators be within allowable limits.


2021 ◽  
pp. 107754632110005
Author(s):  
Yonglei Zhang ◽  
Guo Wei ◽  
Hao Wen ◽  
Dongping Jin ◽  
Haiyan Hu

The vibration isolation system using a pair of oblique springs or a spring-rod mechanism as a negative stiffness mechanism exhibits a high-static low-dynamic stiffness characteristic and a nonlinear jump phenomenon when the system damping is light and the excitation amplitude is large. It is possible to remove the jump via adjusting the end trajectories of the above springs or rods. To realize this idea, the article presents a vibration isolation system with a cam–roller–spring–rod mechanism and gives the detailed numerical and experimental studies on the effects of the above mechanism on the vibration isolation performance. The comparative studies demonstrate that the vibration isolation system proposed works well and outperforms some other vibration isolation systems.


Author(s):  
A.S. Gusev ◽  
L.V. Zinchenko ◽  
S.A. Starodubtseva

When designing technical structures, the safety of their elements is a fundamental principle. This highlights the significance of the proposed solution to the structural analysis of the trajectories of non-Gaussian stationary processes. The solution aims to acquire source data for calculating the stress-strength reliability of structural elements operating under random loads. We analyze an approach that makes it possible to account for the statistical dependence between processes and their derivatives, despite the apparent lack of correlation between them. The considered approach can be utilized in the design of vibration protection of transport vehicles to calculate the probability of a shock absorber breakdown, the probability of loss of the road-wheel contact, etc. The operation reliability of such systems is defined as the probability that the absolute maximum of the process does not exceed the specified standard level during a certain time interval. The article presents the reliability calculation using structural analysis on the example of a one-dimensional stochastic system.


1977 ◽  
Vol 99 (2) ◽  
pp. 130-136 ◽  
Author(s):  
D. L. Klinger ◽  
A. J. Calzado

An active, nonlinear, pneumatic suspension applicable to passenger railcars is described. Standard on-off valves modulate pressure differences between dual opposing airbags to attenuate vibration and create guidance forces. Improved vibration isolation over that of conventional passive suspensions is achieved at low power levels. Guidance forces are provided with small suspension travel using short bursts of compressed air taken from vehicle supply reservoirs. Acceleration, relative displacement, and pressure transducers provide the control signals required for stabilization, feedforward guidance commands, and disturbance attenuation. Simulation results indicate that performance comparable to hydraulic servosystems can be attained with substantially reduced system complexity and power requirements.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Yuhu Shan ◽  
Wenjiang Wu ◽  
Xuedong Chen

In the ultraprecision vibration isolation systems, it is desirable for the isolator to have a larger load bearing capacity and a broader isolation bandwidth simultaneously. Generally, pneumatic spring can bear large load and achieve relatively low natural frequency by enlarging its chamber volume. However, the oversized isolator is inconvenient to use and might cause instability. To reduce the size, a miniaturized pneumatic vibration isolator (MPVI) with high-static-low-dynamic stiffness (HSLDS) is developed in this paper. The volume of proposed isolator is minimized by a compact structure design that combines two magnetic rings in parallel with the pneumatic spring. The two magnetic rings are arranged in the repulsive configuration and can be mounted into the chamber to provide the negative stiffness. Then dynamic model of the developed MPVI is built and the isolation performances are analyzed. Finally, experiments on the isolator with and without the magnetic rings are conducted. The final experimental results are consistent with the dynamical model and verify the effectiveness of the developed vibration isolator.


Sign in / Sign up

Export Citation Format

Share Document