Finite Element Analysis of Functionally Graded Shell Panels Under Thermal Loading

Aerospace ◽  
2005 ◽  
Author(s):  
W. Glenn Cooley ◽  
Anthony Palazotto

Functionally Graded Materials (FGM) have continuous variation of material properties from one surface to another unlike a composite which has stepped (or discontinuous) material properties. The gradation of properties in an FGM reduces the thermal stresses, residual stresses, and stress concentrations found in traditional composites. An FGM’s gradation in material properties allows the designer to tailor material response to meet design criteria. For example, the Space Shuttle utilizes ceramic tiles as thermal protection from heat generated during re-entry into the Earth’s atmosphere. However, these tiles are prone to cracking at the tile / superstructure interface due to differences in thermal expansion coefficients. An FGM made of ceramic and metal can provide the thermal protection and load carrying capability in one material thus eliminating the problem of cracked tiles found on the Space Shuttle. This paper will explore analysis of shell panels under thermal loading and compare performance of traditional homogeneous materials to FGMs using ABAQUS [1] finite element software. First, theoretical development of FGMs is presented. Second, finite element modeling technique for FGMs is discussed for a thermal stress analysis. Third, homogeneous curved panels made of ceramic and metal are analyzed under thermal loading. Finally, FGM curved panels created from a mixture of ceramic and metal are analyzed. FGM performance is compared to the homogeneous materials in order to explore the effect continuously grading material properties has on structural performance.

Author(s):  
G. Patel ◽  
A. N. Nayak ◽  
A. K. L. Srivastava

The present paper reports an extensive study on dynamic instability characteristics of curved panels under linearly varying in-plane periodic loading employing finite element formulation with a quadratic isoparametric eight nodded element. At first, the influences of three types of linearly varying in-plane periodic edge loads (triangular, trapezoidal and uniform loads), three types of curved panels (cylindrical, spherical and hyperbolic) and six boundary conditions on excitation frequency and instability region are investigated. Further, the effects of varied parameters, such as shallowness parameter, span to thickness ratio, aspect ratio, and Poisson’s ratio, on the dynamic instability characteristics of curved panels with clamped–clamped–clamped–clamped (CCCC) and simply supported-free-simply supported-free (SFSF) boundary conditions under triangular load are studied. It is found that the above parameters influence significantly on the excitation frequency, at which the dynamic instability initiates, and the width of dynamic instability region (DIR). In addition, a comparative study is also made to find the influences of the various in-plane periodic loads, such as uniform, triangular, parabolic, patch and concentrated load, on the dynamic instability behavior of cylindrical, spherical and hyperbolic panels. Finally, typical design charts showing DIRs in non-dimensional forms are also developed to obtain the excitation frequency and instability region of various frequently used isotropic clamped spherical panels of any dimension, any type of linearly varying in-plane load and any isotropic material directly from these charts without the use of any commercially available finite element software or any developed complex model.


Designs ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 9
Author(s):  
Sujith Bobba ◽  
Shaik Abrar ◽  
Shaik Mujeebur Rehman

The present work deals with the development of a finite element methodology for obtaining the stress distributions in thick cylindrical HK40 stainless steel pipe that carries high-temperature fluids. The material properties and loading were assumed to be random variables. Thermal stresses that are generated along radial, axial, and tangential directions are generally computed using very complex analytical expressions. To circumvent such an issue, probability theory and mathematical statistics have been applied to many engineering problems, which allows determination of the safety both quantitatively and objectively based on the concepts of reliability. Monte Carlo simulation methodology is used to study the probabilistic characteristics of thermal stresses, and was implemented to estimate the probabilistic distributions of stresses against the variations arising due to material properties and load. A 2-D probabilistic finite element code was developed in MATLAB, and the deterministic solution was compared with ABAQUS solutions. The values of stresses obtained from the variation of elastic modulus were found to be low compared to the case where the load alone was varying. The probability of failure of the pipe structure was predicted against the variations in internal pressure and thermal gradient. These finite element framework developments are useful for the life estimation of piping structures in high-temperature applications and for the subsequent quantification of the uncertainties in loading and material properties.


Author(s):  
Ahmed Raza ◽  
Himanshu Pathak ◽  
Mohammad Talha

In this work, stochastic perturbation-based vibration characteristics of cracked bi-material and functionally graded material (FGM) domain with uncertain material properties are investigated using the extended finite element method. The level set function is implemented to track the geometrical discontinuities. The partition of unity-based extrinsic enrichment technique is employed to model the crack and material interface. The exponential law is used to model the graded material properties of FGM. The First-order perturbation technique (FOPT) is implemented to predict the standard deviation of natural frequency for the given uncertainties in the material properties. The numerical results are presented to show the effect of geometrical discontinuities and material randomness on vibration characteristics.


Author(s):  
Vijaya Kanth Pamarthi ◽  
V. Balakrishna Murthy

Thermal protection systems (TPS) are used in space applications to protect structures failing from burning and/or excessive temperatures. In this work, a finite element simulation is performed to analyze the behavior of a composite rocket motor casing during the expansion of combustion gases inside the motor. A two-dimensional axisymmetric model of a rocket motor casing provided with an insulating liner is modeled in a finite element software ANSYS. Variable equivalent heat flux at the inside faces of the liner, due to radiation and convection of gases, is estimated and applied as a boundary condition. The reduction of heat load with time due to latent heat of fusion and the resistance offered by char that exists above the pyrolysis front is also considered. At the same time, the material properties of the portion of the liner exposed to its melting point temperature are regulated to offer negligible resistance to move the boundary load on to the pyrolysis front at every instant. A transient analysis is carried out with appropriate mesh quality and time steps for 10 s. Ablation, charring, and unaffected regions are identified and the required insulation liner thickness is recommended. Extension of the procedure to model a similar motor with any other cylindrical length is discussed.


Author(s):  
Wei Yang ◽  
Jyhwen Wang

A generalized analytical solution of mechanical and thermal induced stresses in a multi-layer composite cylinder is presented. Based on the compatibility condition at the interfaces, an explicit solution of mechanical stress due to inner and outer surface pressures and thermal stress due to temperature change is derived. A finite element model is also developed to provide the comparison with the analytical solution. It was found that the analytical solutions are in good agreement with finite element analysis result. The analytical solution shows the non-linear dependency of thermal stress on the diameters, thicknesses and the material properties of the layers. It is also shown that the radial and circumferential thermal stresses depend linearly on the coefficients of thermal expansion of the materials and the temperature change. As demonstrated, this solution can also be applied to analyze the thermo-mechanical behavior of pipes coated with functionally graded materials.


2011 ◽  
Vol 255-260 ◽  
pp. 952-956
Author(s):  
Jian Ping Sun ◽  
Jian Ping Chen ◽  
Gang Li

The reasons why the producing of the difference in temperature distributing and thermal stresses of box aqueduct under solar radiation are analyzed. The difference in temperature distributing and thermal stresses are effectively simulated by the finite element software ANSYS.The calculation results indicate that concrete box aqueduct body inter-surface whatever along the longitudinal and transverse will produce considerable thermal stresses under solar radiation, and its value has exceeded the design of concrete tensile strength. Therefore, the thermal stresses under the solar radiation must be considered in the design of box aqueduct body structural. We should appropriately configure temperature reinforcing steel bar.


Author(s):  
Qin Ma ◽  
Cesar Levy ◽  
Mordechai Perl

Our previous studies have demonstrated that the 3D SIFs of a pressurized cylinder can be greatly affected by many factors. While an autofrettage process may introduce favorable residual stresses at the bore of the cylinder, other factors such as erosions and cracks, once introduced, may greatly reduce the effectiveness of the autofrettage results. In this study, we focus on how the non-circularity of cracks affects the 3D SIFs for a cylinder that contains finite erosions while keeping other conditions and material properties unchanged. Numerical analysis was performed using ANSYS, a standard commercially available finite element package. The residual stress due to any autofrettage process was simulated using the equivalent thermal loading. A closer look was given to problems with different crack configurations and how non-circularity of cracks affects the overall fatigue life of the cylinder when combined with other factors in comparison with circular crack only configurations.


Sign in / Sign up

Export Citation Format

Share Document