A Hybrid Parallelizable Algorithm for Computer Simulation of the Motion Behaviors of a Branched Multibody System

Author(s):  
Shanzhong (Shawn) Duan ◽  
Yogesh Patel

This paper presents a hybrid parallelizable algorithm for the computer-aided modeling of the dynamic behavior of multibody open tree systems. The method is based on cutting certain system interbody joints at branched bodies so that a system of largely independent multibody subchains is formed. These subchains interact with one another through associated unknown constraint forces fc at the cut joints. The increased parallelism is obtainable through cutting joints and the explicit determination of associated constraint forces combined with a sequential O(n) procedure. Consequently, the sequential O(n) procedure is carried out within each subchain to form and solve the equations of motion, while parallel strategies are performed between the subchains to form and solve constraint equations concurrently. Two extreme cutting procedures are further discussed to conduct a comparison of computational efficiency. One case is to cut the joints at branched bodies so that the longest lengths of subchains are obtained and the other is to cut the joints at branched bodies so that the shortest lengths of subchains are formed. The algorithm can easily accommodate the available number of processors while maintaining high efficiency. The algorithm will also be implemented on both parallel homogeneous computing (PHC) systems and network-distributed heterogeneous computing (DHC) environment. The implementation of the algorithm in a DHC environment will permit engineers and researchers to conduct distributed simulation of dynamic behaviors of large and complex multibody systems on ubiquitous network-distributed PC workstations in their workplace. In short, the exploration of the parallelizable algorithm for a multibody tree system will provide a deep understanding of the relationship between computational load balancing and optimal joint locations to be cut. The computational efficiency of the algorithm can be increased further.

Author(s):  
Shanzhong Duan ◽  
Kurt S. Anderson

Abstract The paper presents a new hybrid parallelizable low order algorithm for modeling the dynamic behavior of multi-rigid-body chain systems. The method is based on cutting certain system interbody joints so that largely independent multibody subchain systems are formed. These subchains interact with one another through associated unknown constraint forces f¯c at the cut joints. The increased parallelism is obtainable through cutting the joints and the explicit determination of associated constraint loads combined with a sequential O(n) procedure. In other words, sequential O(n) procedures are performed to form and solve equations of motion within subchains and parallel strategies are used to form and solve constraint equations between subchains in parallel. The algorithm can easily accommodate the available number of processors while maintaining high efficiency. An O[(n+m)Np+m(1+γ)Np+mγlog2Np](0<γ<1) performance will be achieved with Np processors for a chain system with n degrees of freedom and m constraints due to cutting of interbody joints.


Author(s):  
Shanzhong Duan ◽  
Andrew Ries

This paper presents an efficient parallelizable algorithm for the computer-aided simulation and numerical analysis of motion behaviors of multibody systems with closed-loops. The method is based on cutting certain user-defined system interbody joints so that a system of independent multibody subchains is formed. These subchains interact with one another through associated unknown constraint forces fc at the cut joints. The increased parallelism is obtainable through cutting joints and the explicit determination of associated constraint forces combined with a sequential O(n) method. Consequently, the sequential O(n) procedure is carried out within each subchain to form and solve the equations of motion while parallel strategies are performed between the subchains to form and solve constraint equations concurrently. For multibody systems with closed-loops, joint separations play both a role of creation of parallelism for computing load distribution and a role of opening a closed-loop for use of the O(n) algorithm. Joint separation strategies provide the flexibility for use of the algorithm so that it can easily accommodate the available number of processors while maintaining high efficiency. The algorithm gives the best performance for the application scenarios for n>>1 and n>>m, where n and m are number of degree of freedom and number of constraints of a multibody system with closed-loops respectively. The algorithm can be applied to both distributed-memory parallel computing systems and shared-memory parallel computing systems.


Author(s):  
Shanzhong Duan

Molecular dynamics is effective for a nano-scale phenomenon analysis. This paper presents a hybrid parallelizable algorithm for the computer simulation of the motion behavior of molecular chain and open-tree structure on parallel computing system. The algorithm is developed from an approach of rigid body dynamics, in which interbody constraints are exposed so that a system of largely independent multibody subchains is formed. The increased parallelism is obtainable through bringing interbody constraints to evidence and the explicit determination of the associated constraint forces combined with a sequential O(n) procedure. Each subchain then is assigned to a processor for parallel computing. The algorithm offers a sequential O(n) performance if there is only one processor available. The algorithm has O(log2n) computational efficiency if there are as many processors available as number for molecular bodies. For most common scenario, the algorithm will give a computational complexity between O(n) and O(log2n) if number of available processor is less than number of molecular bodies.


2021 ◽  
Author(s):  
Edward J. Dold ◽  
Philip A. Voglewede

Abstract Toggle mechanisms are used throughout engineering to accomplish various tasks, for example residential electrical switching. The design of toggle mechanisms can be broken into three categories: determination of a topology, geometric parameterization, and optimization. While topological determination and optimization have well established processes for use in design, geometric parameterization which includes defining link lengths and spring stiffness has largely been left to engineering judgement. This paper presents a design methodology using potential energy graphs which informs the engineering decisions made in choosing mechanism parameters, giving designers higher confidence in the design. A kinematic analysis coupled with Lagrange’s equation determines the relationship between the mechanism parameters and the potential energy curve. Plotting the potential energy with respect to the generalized coordinate yields a graph with a slope that is the generalized force or moment. The relationships between parameters and their effects on the mechanism are difficult to observe in the equations of motion, but potential energy plots readily provide information pertinent to the design of toggle mechanisms and decouple their effects. The plots also allow design by position rather than time which makes the design process faster. The design process is applied to three examples: a simple toggle mechanism, a compliant mechanism, and a reconfigurable mechanism to show the nuances of the approach.


Author(s):  
Kurt S. Anderson

Abstract This paper presents a new highly efficient procedure for the determination of the dynamical equations of motion for complex multibody systems and their subsequent temporal integration using parallel computing. The method is applicable to general systems of rigid bodies which may contain arbitrary joint types, multiple branches, and/or close loops. The method is based on the explicit determination of constraint forces at key joint locations and the subsequent highly efficient determination of system state time derivatives. The algorithm uses a novel hybrid direct and iterative solution scheme which allows a substantially higher degree of parallelization than is generally obtainable using the more conventional recursive O(N) procedures. It is shown that at the coarsest level the parallelization obtainable easily exceeds that indicated by the topology of the system. The procedure can produce a theoretical and time optimal O(log2N) performance on computational throughput with a processor optimal O(N) processors on a MDMD distributed architecture processing system.


1994 ◽  
Vol 72 (03) ◽  
pp. 426-429 ◽  
Author(s):  
S Kitchen ◽  
I D Walker ◽  
T A L Woods ◽  
F E Preston

SummaryWhen the International Normalised Ratio (INR) is used for control of oral anticoagulant therapy the same result should be obtained irrespective of the laboratory reagent used. However, in the UK National External Quality Assessment Scheme (NEQAS) for Blood Coagulation INRs determined using different reagents have been significantly different.For 18 NEQAS samples Manchester Reagent (MR) was associated with significantly lower INRs than those obtained using Diagen Activated (DA, p = 0.0004) or Instrumentation Laboratory PT-Fib HS (IL, p = 0.0001). Mean INRs for this group were 3.15, 3.61, and 3.65 for MR, DA, and IL respectively. For 61 fresh samples from warfarin-ised patients with INRs of greater than 3.0 the relationship between thromboplastins in respect of INR was similar to that observed for NEQAS data. Thus INRs obtained with MR were significantly lower than with DA or IL (p <0.0001). Mean INRs for this group were 4.01, 4.40, and 4.59 for MR, DA, and IL respectively.We conclude that the differences between INRs measured with the thromboplastins studied here are sufficiently great to influence patient management through warfarin dosage schedules, particularly in the upper therapeutic range of INR. There is clearly a need to address the issues responsible for the observed discrepancies.


2016 ◽  
pp. 137-142
Author(s):  
V.O. Benyuk ◽  
◽  
V.M. Goncharenko ◽  
T.R. Nykoniuk ◽  
◽  
...  

The objective: to еxplore the relationship between the activity of endometrial proliferation and the state of the local immune response in the uterus in the conditions berprestasi process. Patients and methods. Examined 228 women of reproductive and perimenopausal age with endometrial pathology using ultrasound and then performing hysteroresectoscopy. Determination of the concentrations of the cytokines IL-1, IL-2, IL-6 and TNF was performed by solid phase ELISA. Results. Found a trend that confirms the loss of sensitivity to hormones at the stage of malignancy of the endometrium and can be used as diagnostic determinants in determining the nature of intrauterine pathology and criterion of the effectiveness of conservative therapy. Conclusion. Improving etiopatogenetice approach to the therapy of hyperplastic proce.sses of endometrium with determination of receptor phenotype of the endometrium is a research direction in modern gynecology, which will help to improve the results of treatment and prevention of intrauterine pathology. Key words: endometrial hyperplasia,the receptors for progesterone and estrogen, immunohistochemical method.


2012 ◽  
Vol 34 (3) ◽  
pp. 169-184 ◽  
Author(s):  
Hoang Thi Bich Ngoc

Vertical axis wind turbine technology has been applied last years, very long after horizontal axis wind turbine technology. Aerodynamic problems of vertical axis wind machines are discussible. An important problem is the determination of the incidence law in the interaction between wind and rotor blades. The focus of the work is to establish equations of the incidence depending on the blade azimuth, and to solve them. From these results, aerodynamic torques and power can be calculated. The incidence angle is a parameter of velocity triangle, and both the factors depend not only on the blade azimuth but also on the ratio of rotational speed and horizontal speed. The built computational program allows theoretically selecting the relationship of geometric parameters of wind turbine in accordance with requirements on power, wind speed and installation conditions.


1986 ◽  
Vol 14 (4) ◽  
pp. 201-218 ◽  
Author(s):  
A. G. Veith

Abstract This four-part series of papers addresses the problem of systematic determination of the influence of several tire factors on tire treadwear. Both the main effect of each factor and some of their interactive effects are included. The program was also structured to evaluate the influence of some external-to-tire conditions on the relationship of tire factors to treadwear. Part I describes the experimental design used to evaluate the effects on treadwear of generic tire type, aspect ratio, tread pattern (groove or void level), type of pattern (straight rib or block), and tread compound. Construction procedures and precautions used to obtain a valid and functional test method are included. Two guiding principles to be used in the data analyses of Parts II and III are discussed. These are the fractional groove and void concept, to characterize tread pattern geometry, and a demonstration of the equivalence of wear rate for identical compounds on whole tread or multi-section tread tires.


Sign in / Sign up

Export Citation Format

Share Document