Quantitative and Qualitative Comparison of Low-Temperature, Heat-Activated Cooling Systems

Author(s):  
Y. Gupta ◽  
L. Metchop ◽  
T. Frantzis ◽  
P. E. Phelan

This paper compares the quantitative and qualitative performances of three different heat-activated cooling systems, e.g. a silica-gel water adsorption system, a LiBr-H2O absorption system, and a desiccant air system. Each of these systems can be utilized at relatively low heat source temperatures, but it is unclear which of these systems is best suited to what range of heat source temperature. Our study explores answers to this question by generating quantitative results comparing their relative thermal performance, i.e. COP and refrigeration capacity, and a qualitative comparison based on the size, maturity of technology, safe operation, etc. Each of these systems is assumed to work under the following operating conditions: a condensing temperature of 29 °C, an evaporating temperature of 19 °C, a hot water temperature range of 40-120 °C, and a hot water mass flow rate of 0.4 kg/sec. Individual mathematical models are developed for each system and numerically solved using different techniques. In order to provide a fair comparison between the fundamentally different systems, a UA (overall heat transfer coefficient multiplied by the heat transfer area) value of 1.0 kW/ °C is considered for the heat exchanger that transfers heat from the supplied hot water. Furthermore, to compare systems of similar size, the mass of silica gel in adsorption and desiccant system and mass of LiBr-H2O solution in absorption system were specified such that each system provides the same amount of refrigeration (8.0 kW) at a source temperature of 90 °C. It is found that the absorption and adsorption cooling systems have a higher refrigeration capacity at heat source temperatures below 90 °C, while the desiccant air system outperforms the others at temperatures above 90 °C.

2022 ◽  
Vol 2160 (1) ◽  
pp. 012032
Author(s):  
Hongxuan Li ◽  
Tonghua Zou ◽  
Qingling Hui ◽  
Ting Li ◽  
Walter Mittelbach

Abstract In recent years, adsorption refrigeration technology has attracted wide attention from experts and scholars at home and abroad due to its environmental friendliness and energy saving advantages. In order to study the effectiveness of adsorption refrigeration technology to recover low-grade energy, a silica gel-water adsorption refrigeration system was proposed, which can effectively utilize low-grade energy such as industrial waste heat. The structure and composition of the system are introduced. The operation performance of the unit is tested under different working conditions by orthogonal experimental method, and the experimental results are analyzed. The effects of hot water temperature and flow, chilled water temperature and flow on the refrigeration capacity and COP value of the system are obtained. The experimental results show that under the low-temperature heat source of 55-75°C, the cooling capacity of the system can reach 5.3-12 and the COP value can reach 0.36-0.56. Under the same hot water temperature difference, the cooling capacity and COP value of the system increase rapidly under the condition of changing the hot water temperature at low temperature, indicating that increasing the heat source temperature at low temperature has a greater impact on the system performance. Through the analysis of primary and secondary effects, it is concluded that the inlet temperature of hot water is the main factor affecting the refrigeration capacity and COP value of the system.


2011 ◽  
Vol 32 (3) ◽  
pp. 57-70 ◽  
Author(s):  
Dariusz Mikielewicz ◽  
Jarosław Mikielewicz

Utilisation of bleed steam heat to increase the upper heat source temperature in low-temperature ORC In the paper presented is a novel concept to utilize the heat from the turbine bleed to improve the quality of working fluid vapour in the bottoming organic Rankine cycle (ORC). That is a completely novel solution in the literature, which contributes to the increase of ORC efficiency and the overall efficiency of the combined system of the power plant and ORC plant. Calculations have been accomplished for the case when available is a flow rate of low enthalpy hot water at a temperature of 90 °C, which is used for preliminary heating of the working fluid. That hot water is obtained as a result of conversion of exhaust gases in the power plant to the energy of hot water. Then the working fluid is further heated by the bleed steam to reach 120 °C. Such vapour is subsequently directed to the turbine. In the paper 5 possible working fluids were examined, namely R134a, MM, MDM, toluene and ethanol. Only under conditions of 120 °C/40 °C the silicone oil MM showed the best performance, in all other cases the ethanol proved to be best performing fluid of all. Results are compared with the "stand alone" ORC module showing its superiority.


2016 ◽  
Vol 819 ◽  
pp. 361-365 ◽  
Author(s):  
Seung Jin Oh ◽  
Kyaw Thu ◽  
Muhammad Wakil Shahzad ◽  
Wongee Chun ◽  
Kim Choon Ng

In this paper, an experimental study of a laminar flow solid desiccant dehumidifier has been presented. The cyclic steady state performance of adsorption-desorption processes was analyzed at various heat source temperatures and typical ambient humidity conditions in tropics. The desiccant dehumidification system consists of two beds filled with silica gel, two heat exchangers operating at 30 oC and 80 oC respectively, three humidity stations for measurement of the temperature and humidity conditions of the system and a blower to make airflow throughout the system. Type-RD silica gel of 0.3 mm average diameter was used as the working desiccant in the dehumidification system. This system has no moving parts rendering less maintenance compared with a rotary type. It is also energy-efficient means of dehumidification by adsorption process with low temperature heat source as compared to the conventional methods. As a result, it was observed the humidity ratio of inlet air is reduced from 24 g/kg of dry air to about 17 g/kg of dry air. Concomitantly, hot water at 80 oC is used to regenerate the adsorbent.


2020 ◽  
Vol 24 (2 Part A) ◽  
pp. 831-842
Author(s):  
Chao Luo ◽  
Jun Zhao ◽  
Yongzhen Wang ◽  
Hongmei Yin ◽  
Qingsong An ◽  
...  

To match for the different temperature of the geothermal resource and strengthen the flexibility of organic Rankine cycle, a variable capacity power generation superstructure based on flash and organic Rankine cycle for geothermal energy was proposed. A combined flash-binary experimental prototype is newly established to investigate thermodynamic performance both on system and equipment in this paper. Pressured hot water is adopted as the extensive worldwide existed hydrothermal geothermal resource, eliminating the influence of the used heat transfer oil on evaporating process. The experimental results show that there is an optimal mass-flow rate of R245fa under the condition of different heat source temperature. Flash and binary power subsystem dominate the flash-binary power system, respectively, when the heat source temperature is 120? and 130?. The isotropic efficiency of modified compressor just between 0.2 and 0.25. The power output of per ton geofluid are 0.78 kWh/t and 1.31 kWh/t, respectively, when the heat source temperature are 120? and 130?. These results will predict the operation data of flash-binary power plant driven by the low-medium temperature geothermal water for construction in western of China.


2020 ◽  
pp. 1-27
Author(s):  
Ahmad K. Sleiti ◽  
Wahib Al-Ammari ◽  
Mohammed Al-Khawaja

Abstract Refrigerants of the conventional cooling systems contribute to global warming and ozone depletion significantly, therefore it is necessary to develop new cooling systems that use renewable energy resources and waste heat to perform the cooling function with eco-friendly working fluids. To address this, the present study introduces and analyzes a novel regenerative thermo-mechanical refrigeration system that can be powered by renewable heat sources (solar, geothermal, or waste heat). The system consists of a novel expander-compressor unit (ECU) integrated with a vapor compression refrigeration system. The integrated system operates at the higher-performance supercritical conditions of the working fluids as opposed to the lower-performance subcritical conditions. The performance of the system is evaluated based on several indicators including the power loop efficiency, the coefficient of performance (COP) of the cooling loop, and the expander-compressor diameters. Several working fluids were selected and compared for their suitability based on their performance and environmental effects. It was found that for heat source temperature below 100 °C, adding the regenerator to the system has no benefit. However, the regenerator increases the power efficiency by about 1 % for a heat source temperature above 130 °C. This was achieved with a very small size regenerator (Dr = 6.5 mm, Lr = 142 mm). Results show that there is a trade-off between high-performance fluids and their environmental effects. Using R32 as a working fluid at heat source temperature Th=150 °C and cold temperature Tc1=40 °C, the system produces a cooling capacity of 1 kW with power efficiency of 10.23 %, expander diameter of 53.12 mm, and compressor diameter of 75.4mm.


Author(s):  
Daniele Fiaschi ◽  
Giampaolo Manfrida ◽  
Lorenzo Talluri

The research deals with the possibility of effective exploitation of low temperature geothermal energy resources, which are generally much more widespread worldwide compared to conventional high temperature ones, typically available only in limited areas of the Earth. The basic idea is the application of an advanced binary cycle, only thermally coupled to the primary endogen heat source. The selected reference-power cycle is the well-known Kalina, which gives the possibility of optimizing the matching between heat capacities of the geothermal fluid (i.e. typically hot water or saturated steam) and the cycle working fluid, which is a non azeotropic NH3-H2O mixture with variable vaporization temperature at a fixed pressure. The heat transfer diagrams of the main Kalina heat exchangers, namely the condenser and the evaporator, are analysed with the aim of minimizing the irreversibilities related to the heat transfer. At different fixed NH3-H2O composition and condenser pressures, the evaporator pressure shows an efficiency optimizing value between 40 and 55 bar, generally increasing at higher condenser pressure. At fixed geothermal heat source temperature, condenser/evaporator pressures and working mixture composition, the cycle efficiency increases with increasing evaporator temperature, because of the reduction in the approach temperature difference between the geothermal and the working fluid. Higher efficiencies are found at higher NH3 concentrations. The proposed Water-Ammonia power cycle is further enhanced introducing a chiller (thus making the power cycle a CCP unit), thanks to the properties of the fluid mixture downstream the absorber, through an intermediate heat exchanger between the condenser and the evaporator. Mainly due to the better matching of heat capacities between the geothermal and the working fluid, the proposed power cycle offers the possibility of interesting improvements in electrical efficiency compared to traditionally proposed binary cycles using ORCs, at fixed temperature level of the heat source. In the investigated proposal, values of electric efficiency between 15 and 20% are found. An economic analysis is presented, demonstrating that the CCP system is able to produce electricity at decreased unit cost with respect to the power-only unit.


2011 ◽  
Vol 474-476 ◽  
pp. 2335-2340 ◽  
Author(s):  
Han Dong Wang

In order to utilize solar energy and industry waste heat to reduce electricity consumption in heating, ventilating, air conditioning and refrigerating (HVAC&R) engineering, the authors developed a new style diffusion-absorption refrigeration (DAR) system. It can be driven by heat sources with low temperature, and in which LiNO3-NH3-He is used as working fluids and a spray absorber with a solution cooler is designed to enhance the mass and heat transfer, respectively. What presented here is about the modified experiment set and the latest experiment results. The experiments show that the system can start to operate when the temperature of heat source (hot water) reaches to 60°C and it can meet the temperature requirement of air conditioning when heat source temperature varies in the range of 70~83°C. The evaporating temperature varies from 10~-13°C at various absorbing temperatures when heat source temperature reaches the level of 83~95°C. The corresponding refrigeration capacity and coefficient of performance (COP) varies in the range of 1.90~4.22kW and 0.177~0.332, respectively. It is also found that the evaporating temperature, refrigeration capacity and COP are so sensitive to absorbing temperature rather than generating or condensing temperature that the absorbing temperature can be used to regulate the working condition and parameters of the DAR system, e.g. by means of modulating the flow rate of cooling water circulating in the solution cooler equipped to the spray absorber. Thus, in the fields with plenty of solar energy or industry waste heat, the new style DAR system can be considered as an ideal candidate for utilizing low-grade energy, saving energy and reducing emission.


2018 ◽  
Vol 49 ◽  
pp. 00020 ◽  
Author(s):  
Michal Duda ◽  
Jurij Dobrianski ◽  
Daniel Chludzinski

Devices called reverse thermosyphon enable passive heat transfer when the heat source is above the place of its receipt. This is often the case in solar installations for the preparation of hot water. The article concerns the determination of the possibility of using a two-phase inverted thermosyphon with two working factors in a passive downwards heat transport installation. The analysis was carried out on the basis of previous experimental studies. The height of the tested installation in one case was 1.5 m, in the second 18 m, at a heat load of 300, 600 and 900 W. Water and pentane was used as a working fluid inside the loop. Initial conclusions from the analysis confirm the possibility of using reverse thermosyphon with two working factors in the construction of a passive heat transport system.


Sign in / Sign up

Export Citation Format

Share Document