Numerical Analysis of Local Heat Transfer From a Flat Plate to a Swirling Air Impingining Jet

Author(s):  
X. Terry Yan ◽  
Rahul S. Kalvakota

Local heat transfer from a flat plate to a swirling circular air impinging jet is investigated numerically. Reynolds Averaged Navier-Stokes equations (RANS) and energy equation are solved for the axisymmetric, three dimensional flow. Eddy-viscosity based turbulence models, RNG and V2F, are used. Non-uniform meshes are used for the three dimensional flows and mesh independent solutions are obtained. The flow Reynolds number, which is based on the jet diameter, is kept at 23,000. In the analysis, local heat transfer coefficients are obtained for different swirl numbers, S = 0.21, 0.35 and 0.47 and jet-to-plate distance, L/D, ranging from 2 to 9. Investigation of the effect of swirl flow profile at the exiting plane of the jet on heat transfer is also presented. It is found that different swirl profiles with the same swirl number lead to very different heat transfer behaviors in the stagnation region of the impinging jet.

Author(s):  
X. Terry Yan ◽  
Yavaraj Saravanan

Local heat transfer from a flat plate to a pair of circular air impinging jets is investigated numerically. A pair of impinging jets from fully-developed pipe flows are used for the numerical simulations. The Reynolds Averaged Navier-Stokes equations(RANS) and energy equation are solved for the three dimensional flow. Eddy-viscocity based turbulence models, RNG k-epsilon and V2F models, are used. Hybrid meshes are used for the three dimensional flows and mesh independent solutions are obtained. The flow Reynolds number, which is based on the jet diameter, is kept at 23,000. In the analysis, local heat transfer coefficients are obtained for the jet-to-plate distance, L/D, ranging from 2 to 10 and the jet-to-jet spacing, S/D, in the range of 1.75 to 7.0. Both local and average heat transfer coefficients are evaluated and compared with available experimental data under same flow conditions. The effect of using different turbulence models in the numerical analysis is evaluated and the selection of proper turbulence models under such a flow condition is suggested.


2000 ◽  
Author(s):  
M. Kumagai ◽  
R. S. Amano ◽  
M. K. Jensen

Abstract A numerical and experimental investigation on cooling of a solid surface was performed by studying the behavior of an impinging jet onto a fixed flat target. The local heat transfer coefficient distributions on a plate with a constant heat flux were computationally investigated with a normally impinging axisymmetric jet for nozzle diameter of 4.6mm at H/d = 4 and 10, with the Reynolds numbers of 10,000 and 40,000. The two-dimensional cylindrical Navier-Stokes equations were solved using a two-equation k-ε turbulence model. The finite-volume differencing scheme was used to solve the thermal and flow fields. The predicted heat transfer coefficients were compared with experimental measurements. A universal function based on the wave equation was developed and applied to the heat transfer model to improve calculated local heat transfer coefficients for short nozzle-to-plate distance (H/d = 4). The differences between H/d = 4 and 10 due to the correlation among heat transfer coefficient, kinetic energy and pressure were investigated for the impingement region. Predictions by the present model show good agreement with the experimental data.


Author(s):  
Shoaib Ahmed ◽  
Prashant Singh ◽  
Srinath V. Ekkad

Abstract Liquid crystal thermography and infrared thermography techniques are typically employed to measure detailed surface temperatures, where local heat transfer coefficient (HTC) values are calculated by employing suitable conduction models. One such practice, which is very popular and easy to use, is the transient liquid crystal thermography using one-dimensional semi-infinite conduction model. In these experiments, a test surface with low thermal conductivity and low thermal diffusivity (e.g. acrylic) is used where a step-change in coolant air temperature is induced and surface temperature response is recorded. An error minimization routine is then employed to guess heat transfer coefficients of each pixel, where wall temperature evolution is known through an analytical expression. The assumption that heat flow in the solid is essentially in one-dimension, often leads to errors in HTC determination and this error depends on true HTC, wall temperature evolution and HTC gradient. A representative case of array jet impingement under maximum crossflow condition has been considered here. This heat transfer enhancement concept is widely used in gas turbine leading edge and electronics cooling. Jet impingement is a popular cooling technique which results in high convective heat rates and has steep gradients in heat transfer coefficient distribution. In this paper, we have presented a procedure for solution of three-dimensional transient conduction equation using alternating direction implicit method and an error minimization routine to find accurate heat transfer coefficients at relatively lower computational cost. The HTC results obtained using 1D semi-infinite conduction model and 3D conduction model were compared and it was found that the heat transfer coefficient obtained using the 3D model was consistently higher than the conventional 1D model by 3–16%. Significant deviations, as high as 8–20% in local heat transfer at the stagnation points of the jets were observed between h1D and h3D.


2014 ◽  
Vol 136 (8) ◽  
Author(s):  
X. L. Wang ◽  
H. B. Yan ◽  
T. J. Lu ◽  
S. J. Song ◽  
T. Kim

This study reports on heat transfer characteristics on a curved surface subject to an inclined circular impinging jet whose impinging angle varies from a normal position θ = 0 deg to θ = 45 deg at a fixed jet Reynolds number of Rej = 20,000. Three curved surfaces having a diameter ratio (D/Dj) of 5.0, 10.0, and infinity (i.e., a flat plate) were selected, each positioned systematically inside and outside the potential core of jet flow where Dj is the circular jet diameter. Present results clarify similar and dissimilar local heat transfer characteristics on a target surface due to the convexity. The role of the potential core is identified to cause the transitional response of the stagnation heat transfer to the inclination of the circular jet. The inclination and convexity are demonstrated to thicken the boundary layer, reducing the local heat transfer (second peaks) as opposed to the enhanced local heat transfer on a flat plate resulting from the increased local Reynolds number.


1974 ◽  
Vol 96 (4) ◽  
pp. 455-458 ◽  
Author(s):  
L. E. Wiles ◽  
J. R. Welty

An experimental investigation of laminar natural convection heat transfer from a uniformly heated vertical cylinder immersed in an effectively infinite pool of mercury is described. A correlation was developed for the local Nusselt number as a function of local modified Grashof number for each cylinder. A single equation incorporating the diameter-to-length ratio was formulated that satisfied the data for all three cylinders. An expression derived by extrapolation of the results to zero curvature (the flat plate condition) was found to agree favorably with others’ work, both analytical and experimental. The influence of curvature upon the heat transfer was found to be small but significant. It was established that the effective thermal resistance through the boundary layer is less for a cylinder of finite curvature than for a flat plate. Consequently, local heat transfer coefficients for cylinders are larger than those for flat plates operating under identical conditions.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Koichi Ichimiya ◽  
Koji Tsukamoto

This paper describes the characteristics of the heat transfer and flow of a swirling laminar impinging jet in a comparatively narrow space with a confined wall. Air is impinged on a flat surface with constant wall temperature. The heat transfer and flow field were analyzed numerically by solving three-dimensional governing equations. Heat transfer experiment and flow visualization were also performed. Numerical heat transfer was compared with experimental results. Temperature distribution and velocity vectors in the space were obtained for various swirl numbers at Reynolds number Re=2000. The numerical and experimental results show that the swirling jet enhances or depresses the local heat transfer, and the average Nusselt number ratio with and without swirl takes a peak at a certain swirl number.


1968 ◽  
Vol 90 (1) ◽  
pp. 32-36 ◽  
Author(s):  
A. F. Emery ◽  
K. F. Brettman

An approximate solution to the heat transfer coefficient on a flat plate in a linear shearing flow is given. It is shown that high shearing rates may significantly increase the local heat transfer coefficients.


Sign in / Sign up

Export Citation Format

Share Document