Sustainable Production in the Age of Mass Customization: An Example in the Footwear Industry

Author(s):  
Serena Graziosi ◽  
Michele Germani

It is well known that the global market is driving companies towards new productive paradigms oriented to product customization, agility and environmental sustainability. Companies have to face the problem of providing as much product variety as possible in order to rapidly satisfy a wide number of specific market segments. Even if the emerging automated agile production environments could enable them to manage product variety, in many productive fields, large waste streams, due to the practical difficulty of adapting the traditional production lines to product changes, are still present. At the same time a growing public concern for the environment, is forcing companies to investigate alternative uses for waste material. In this paper we present a practical example from the footwear industry in order to show how companies can successfully apply the concept of sustainable production taking into account the mass customization requirements but contemporarily reducing the material waste. The approach is focused on the combination in the same plant of two different production lines: one is dedicated to the primary production while the other uses the waste material to realize the secondary production.

10.6036/9917 ◽  
2021 ◽  
Vol 96 (5) ◽  
pp. 455-459
Author(s):  
MAHDI NADERI ◽  
ANTONIO FERNÁNDEZ ULLOA ◽  
JOSÉ ENRIQUE ARES GÓMEZ ◽  
GUSTAVO PELÁEZ LOURIDO

Despite the growing importance that is being given to the concepts of sustainability in many areas, not only in industry but also in the economy and public opinion in general, until now, most research has focused, practically, on the analysis of the concepts, but has not addressed, in a comprehensive way, its impact in decision making probably due to the complex relations of interdependence between its different aspects. In this context, MAPSAM (Methodology for the Assessment of Sustainability in Manufacturing Processes and Systems) was created to help the decision-making process, allowing a conscious and transparent assessment by administrators and managers at the different levels of the structure of companies and organisations. This article explains its development and application in a "job shop" type manufacturing system with an approach that allows the integration of economic, environmental and social criteria. MAPSAM is based on the use of various techniques and tools to quantify the importance of each aspect of sustainability and it has been applied in other production environments, being implemented in different systems, analysing their ease of use and evaluating their behaviour. The objective is to show how it helps to make operational, tactical and strategic decisions in the management on these type of manufacturing companies and, specifically, in this contribution we want to highlight its versatility and applicability, by validating it in a certain type of layout. With this new application, MAPSAM increases its possibilities as an innovative instrument that allows companies to make conscious and sustainable decisions in order to be more efficient, fair, supportive and respectful of the environment. Keywords: Manufacturing System, Simulation, Decision Support, Sustainable Production, Decision-Making


Author(s):  
Zahed Siddique ◽  
David W. Rosen ◽  
Nanxin Wang

Abstract The issue of moving from a mass production operating mode to mass customization, or even limited customization, has many companies struggling to reorganize their product architectures. Enabling the production of several related products for different market segments, from a common base, is the focus of the product variety design research area. In this paper, the applicability of product variety design concepts to the design of automotive platforms is explored. Many automotive companies are reducing the number of platforms they utilize across their entire range of cars and trucks in an attempt to reduce development times and costs. To what extent can research on product variety design apply to the problem of platform commonization? This question is explored by comparing product variety design concepts (standardization, modularity, mutability, etc.) to platform structures and requirements. After assessing the applicability of these concepts, a platform representation and methods for measuring platform commonality are proposed that incorporate key characteristics of these concepts. An application to two platforms is included. Although preliminary, this work has led to insight as to why automotive platform commonization is difficult and how product design variety research can potentially aid commonization. The findings are potentially applicable to product platforms in general.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 836 ◽  
Author(s):  
Henriette I. Jager ◽  
Rebecca A. Efroymson ◽  
Latha M. Baskaran

Sustainable production of algae will depend on understanding trade-offs at the energy-water nexus. Algal biofuels promise to improve the environmental sustainability profile of renewable energy along most dimensions. In this assessment of potential US freshwater production, we assumed sustainable production along the carbon dimension by simulating placement of open ponds away from high-carbon-stock lands (forest, grassland, and wetland) and near sources of waste CO 2 . Along the water dimension, we quantified trade-offs between water scarcity and production for an ‘upstream’ indicator (measuring minimum water supply) and a ‘downstream’ indicator (measuring impacts on rivers). For the upstream indicator, we developed a visualization tool to evaluate algae production for different thresholds for water surplus. We hypothesized that maintaining a minimum seasonal water surplus would also protect river habitat for aquatic biota. Our study confirmed that ensuring surplus water also reduced the duration of low-flow events, but only above a threshold. We also observed a trade-off between algal production and the duration of low-flow events in streams. These results can help to guide the choice of basin-specific sustainability targets to avoid conflicts with competing water users at this energy-water nexus. Where conflicts emerge, alternative water sources or enclosed photobioreactors may be needed for algae cultivation.


2020 ◽  
Author(s):  
Benedetta Falsetti ◽  
Elena Vallino ◽  
Luca Ridolfi ◽  
Francesco Laio

<p>Most human activities depend on water. Agriculture alone consumes 70% of all freshwater withdrawals worldwide.  In cases when such withdrawal overcome sustainability levels, water scarcity represents a growing threat to food security. In this framework, there has been an enduring debate on the opportunity of assigning an economic value to water. Some studies argue that water resources would be more efficiently allocated if they had a price that reflects their scarcity and that a pricing policy would also provide incentives for more sustainable consumption. Building on these considerations, in this work we investigate whether the water consumption in agricultural production is reflected in crop prices. </p><p>In this research, we focus specifically on the production of agricultural primary goods to understand whether water consumption is taken into consideration in the prices associated with these products on the global market. We consider the water component also in terms of water availability per capita at the country level (Falkenmark Water Stress Indicator). Aware of the fact that water and land are usually regarded as a single entity, we analyze if the water, isolated from this relation, still has an impact.</p><p>We select twelve representative crops analyzing their farm gate prices from 1991 to 2016, collecting data regarding 162 countries in total. We identify two different behaviors: staple crops (e.g. wheat, maize, soybeans, and potatoes) tend to incorporate in their prices the amount of water employed during the cultivation process. Differently, cash crops (e.g. coffee, cocoa beans, tea, vanilla), which are not crucial in human diets and mainly produced for exportation purposes, show a weaker relationship between water footprint and prices on the global market. These variations may be ascribable to specific market dynamics related to the two product groups. While there could be different elements influencing the behavior of these two macro-categories of crops, it is important to understand how water is related to crop prices to purse more efficient practices in water allocation and governance management, improving environmental sustainability in this field.</p>


2019 ◽  
Vol 1 (1) ◽  
pp. 457-464 ◽  
Author(s):  
Agnieszka Deja ◽  
Tygran Dzhuguryan

AbstractA multi-floor manufacturing in residential districts of huge city promotes decongestion of urban traffic and satisfy the population’s demand for essential goods. City manufacturing and its supply chain entail several challenges related to the sustainable development of a large agglomeration. Environmental problems impose significant constraints on such manufacturing activities and production waste in the urban environment poses a real problem that needs to be addressed by special research. This paper discusses integrated sustainable production waste management for a city multi-floor manufacturing cluster, consisting of a group of production buildings and a supporting logistics node. In line with the theory of integrated sustainable waste management, three key components are addressed: waste management stakeholders, components of the waste management system, and the technical, environmental and legal aspects of a city multi-floor manufacturing cluster. The goal of the paper is to develop a concept for a model of environmental sustainable waste management in a city multi-floor manufacturing cluster, aimed at ensuring the system safety: human - technical facility - environment. This model can serve as a basis for the development of appropriate logistics chains for production waste management considering their hazardousness indicator. The versatility of the model will allow it to be widely used, and when its stages and working principles are embedded in the practice of city multi-floor manufacturing, proper control over the waste management process can be achieved. The application of the proposed model of integrated sustainable production waste management in the practice of the city multi-floor manufacturing clusters will contribute to the environmental sustainability of its operation.


2020 ◽  
Vol 6 ◽  
pp. 160-166
Author(s):  
Y. D. Cisneros-Reyes ◽  
D. C. Caldera-Gonzalez ◽  
M. G. Arredondo-Hidalgo

Despite Mexican leather footwear industry is traditional, it has not increased or even maintained the level of competitiveness in the global market; the export problems of SMEs (Small and Medium Enterprises) have been studied by some authors but the internationalization (beyond exports and imports and including foreign direct investment, international subcontracting and international technical cooperation) has not been deeply explored so it is not documented how the process of this economic segment is occurring and if that is evolving accordingly to the theory (E.g. Uppsala model). The objective of this study is to analyze the internationalization of SMEs of the Mexican leather footwear industry to know if accumulated knowledge and experience in foreign markets effectively leads the organization to more advanced and complex stages of international exchange. A survey composed by 47 questions was applied to a sample of 21 SMEs of the Mexican leather footwear industry, their experience was also collected by semi-structured interviews. Results show that SMEs are involved in the internationalization process strongly oriented to the development of exports and imports and only a small number of them have been able to reach the stage of foreign direct investment. These results suggest that internationalization is only conceived in terms of imports and exports and efforts are carried out only to those stages even if SMEs could obtain a great benefit from the rest of the internationalization exchange (FDI, international subcontracting and technical cooperation). This behaviour might be due to some factors as: (1) the relatively low level of competitiveness of the Mexican firms in the global industry, (2) the lack of know-how and (3) the vision of the owners and managers of the company.


2021 ◽  
Vol 13 (19) ◽  
pp. 10929
Author(s):  
Vasileios Sidiropoulos ◽  
Dimitrios Bechtsis ◽  
Dimitrios Vlachos

Augmented Reality (AR) is an emerging technology in the Industry 4.0 and Logistics 4.0 contexts with an important role in man–machine symbiosis scenarios. Practitioners, although already acquainted with AR technology, are reluctant to adopt AR applications in industrial operations. This stems from the fact that a direct connection that is important for the management of sustainability goals is missing. Moreover, such a connection with economic, social, and environmental sustainability parameters sparsely appears in the AR literature. The proposed research, on one hand, presents an innovative architecture for a stable and scalable AR application that extents state-of-the-art solutions and, on the other hand, attempts to study AR technology within the framework of a sustainable business strategy. The developed system utilizes the Robot Operating System (ROS) alongside an AR mobile application to present an employee navigation scenario in warehouses and production lines. ROS is responsible for mapping the industrial facility, while the AR mobile application identifies the surrounding environment, along with a Real-Time Location System localizes employees in the facility. Finally, ROS identifies the shortest path between the employee and the destination point, while the AR mobile application presents the virtual path for reaching the destination.


Sign in / Sign up

Export Citation Format

Share Document