Finite Element Simulation of the Self-Piercing Riveting Process

Author(s):  
S. G. Qu ◽  
W. J. Deng

This work is focused on the development of a numerical model with the help of the finite element method to predict the magnitude and distribution of deformation associated with the self-piercing riveting process. A 2D axisymmetric model of the self-piercing riveting process is presented using the commercial implicit finite element code MSC.Superform. The flow stress of the work-material is taken as a function of strain, strain-rate and temperature. The shape of the rivet joint and the stress, strain and damage in both of the rivet and workpiece sheets are determined. The information obtained from the process simulation, such as force, metal flow and details of die fill are discussed. The calculated punching forces and the shape of the rivet joint are compared with experimental data and found to be in good agreement. Defects in the riveting are analyzed and are categorized into penetration, necking and lap formation. The effects of workpiece temperature on punching force were also discussed.

1986 ◽  
Vol 64 (9) ◽  
pp. 1030-1036 ◽  
Author(s):  
D. Lévesque ◽  
G. Rousset ◽  
L. Bertrand

The ability to use the finite-element method to solve numerically the frequency-dependent coupled equations of the photoacoustic–thermal effect is demonstrated. Both solids and fluids are simulated by the same set of equations with temperature and displacement as variables. The main interest of this formulation lies in its great flexibility to deal with mixed fluid–solid systems. As a first application, we consider the influence of thermoacoustic coupling on the pressure in a photoacoustic cell. We show that with increasing frequency, a transition from an isothermal to an adiabatic process occurs. Subsequently, results obtained from a numerical simulation of the photoacoustic cell, which includes the effect of a residual volume, are in good agreement with existing experimental data.


2012 ◽  
Vol 446-449 ◽  
pp. 3229-3232
Author(s):  
Chao Jiang Fu

The finite element modeling is established for reinforced concrete(RC) beam reinforced with fiber reinforced polymer (FRP) using the serial/parallel mixing theory. The mixture algorithm of serial/parallel rule is studied based on the finite element method. The results obtained from the finite element simulation are compared with the experimental data. The comparisons are made for load-deflection curves at mid-span. The numerical analysis results agree well with the experimental results. Numerical results indicate that the proposed procedure is validity.


2020 ◽  
Vol 71 (4) ◽  
pp. 339-345
Author(s):  
Mustafa Zor ◽  
Murat Emre Kartal

In this study, control samples of pine (Pinus slyvestris L.), beech (Fagus orientalis L.) and oak (Quercus petreae L.) species were obtained by using fi ber reinforced finger corner joints. Teknobont 200 epoxy and polyvinyl (PVAc) adhesives were used as glue. Bearing in mind the critical loads that may affect their use, experimental samples were tested under diagonal loads. Experimental samples were also analyzed by a computer program using the finite element method (FEM). Finally, experimental data were compared with the results of FEM. The comparisons clearly showed that experimental results and finite element solutions (SAP2000 V17) including semi-rigid connections are in good agreement. As a structural analysis program in furniture engineering designs, FEM can be preferred in terms of reliability and cost.


2011 ◽  
Vol 473 ◽  
pp. 733-738 ◽  
Author(s):  
Giuseppe Casalino

The design of experiments (DOE) is a very useful tool to design and analyze complicated industrial design problems. They help to understand the variability a manufacturing process by investigating which parameters and their interaction mainly affect the output repeatability. As a consequence, it enables to individuate the combination of parameters that optimize the output avoiding misinterpretation that can be due to the singularity of the experimental data. In this study the factorial analysis was used to investigate the effects of the major geometrical parameters on the shape of the force-displacement curve of the self piercing riveting (SPR) process. A full two level three-factorial design (23) was completed, three-way interaction was not considered. The statistical analysis was carried out at four different points of the force-rivet displacement curve. These points can be considered critical since they limit the four steps in which the process is commonly divided for studying purpose. The experimental data did not fulfil the required design points, the missing points were obtained by a finite element model of the riveting process, which furnished the force versus the rivet run.


2018 ◽  
Vol 178 ◽  
pp. 02010 ◽  
Author(s):  
Dorin Luca

Extrusion is the plastic deformation process that allows for the highest degree of complexity profiles to be obtained. This paper presents the simulation of a cold forward extrusion process using the finite element method. The results obtained show the stresses, strains and temperatures during the plastic deformation of the material, as well as the stresses and strains in the punch and die. The analysis of the results obtained for different geometric dimensions of the working tools allowed the optimization of the studied extrusion process. In order to validate the finite element model, experiments were carried out with the data acquisition from the real process, which allowed the appreciation that numerical and experimental data are found in a good agreement.


2010 ◽  
Vol 97-101 ◽  
pp. 2951-2954
Author(s):  
Yong Yang ◽  
Hui Hui Li ◽  
Guang Yao Meng

A physics-based material processing simulation is approached to research the machining distortion for titanium alloy aircraft monolithic component by the finite element method (FEM). Several key technologies, such as material constitutive model, material removal methodology of machining process, determination and application of cutting loads, have been implemented to improve the accuracy of finite element simulation. To verify the FEM result, an experiment is carried out. The distortion position and dimension of aircraft monolithic component resulting from FEM show a good agreement with the experiment result, which indicates that the key technologies presented in the paper are practicable and can be used to simulate the machining process of monolithic component to predict its distortion.


2020 ◽  
Vol 24 (4) ◽  
pp. 2385-2391
Author(s):  
Ya-Ping Li ◽  
Li-Li Wang ◽  
Jie Fan

Fluids in porous media driven by the capillary force are greatly affected by capillary?s geometrical structure. The steady flow in a non-uniform capillary is numerically analyzed by the finite element method. With the given initial and boundary conditions, the flow velocity distribution with different geometrical parameters is obtained, and the result is in a good agreement with the experimental data.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 442
Author(s):  
Nurazwin Zulkifli ◽  
Norhashila Hashim ◽  
Hazreen Haizi Harith ◽  
Mohamad Firdza Mohamad Shukery ◽  
Daniel Iroemeha Onwude ◽  
...  

This study aims to develop a finite element (FE) model to determine the mechanical responses of Exotica papayas during puncture loads. The FE model of the puncture-test was developed using the ANSYS 19.1 software. The proposed framework combined the finite element method and statistical procedure to validate the simulation with the experimental results. Assuming the elastic-plastic behaviour of papaya, the mechanical properties were measured through tensile test and compression test for both skin and flesh. The geometrical models include a quarter solid of papaya that was subjected to a puncture test with a 2 mm diameter flat-end stainless-steel probe inserted into the fruit tissues at 0.5 mm/s, 1 mm/s, 1.5 mm/s, 2 mm/s, and 2.5 mm/s. The FE results showed good agreement with the experimental data, indicating that the proposed approach was reliable. The FE model was best predicted the bioyield force with the highest relative error of 14.46%. In conclusion, this study contributes to the usage of FE methods for predicting the puncture responses of any perishable fruit and agricultural products.


1992 ◽  
Vol 20 (4) ◽  
pp. 230-253 ◽  
Author(s):  
T. Akasaka ◽  
K. Kabe ◽  
M. Koishi ◽  
M. Kuwashima

Abstract The deformation behavior of a tire in contact with the roadway is complicated, in particular, under the traction and braking conditions. A tread rubber block in contact with the road undergoes compression and shearing forces. These forces may cause the loss of contact at the edges of the block. Theoretical analysis based on the energy method is presented on the contact deformation of a tread rubber block subjected to compressive and shearing forces. Experimental work and numerical calculation by means of the finite element method are conducted to verify the predicted results. Good agreement is obtained among these analytical, numerical, and experimental results.


2007 ◽  
Vol 340-341 ◽  
pp. 353-358 ◽  
Author(s):  
M. Loh-Mousavi ◽  
Kenichiro Mori ◽  
K. Hayashi ◽  
Seijiro Maki ◽  
M. Bakhshi

The effect of oscillation of internal pressure on the formability and shape accuracy of the products in a pulsating hydroforming process of T-shaped parts was examined by finite element simulation. The local thinning was prevented by oscillating the internal pressure. The filling ratio of the die cavity and the symmetrical degree of the filling was increased by the oscillation of pressure. The calculated deforming shape and the wall thickness are in good agreement with the experimental ones. It was found that pulsating hydroforming is useful in improving the formability and shape accuracy in the T-shape hydroforming operation.


Sign in / Sign up

Export Citation Format

Share Document