A Molecular Dynamics Simulation of Bubble Nucleation on Solid Surface in Explosive Boiling

Author(s):  
Yu Zou ◽  
Xiulan Huai

A bubble nucleation on solid surface in explosive boiling is simulated by molecular dynamics method. Liquid water on a solid surface is heated until a bubble is nucleated. Liquid water is represented by 10368 simple point charge molecules, and the solid surface is represented by three layers of harmonic molecules which are arranged in an fcc style. The increasing rate of temperature is realized by the temperature control technology of the solid surface molecules. Temperature and pressure of water system is calculated in the process of bubble nucleation. A “ghost atom” is used to estimate the volume of the bubble void, and the diameters of the cavitation are calculated. The bubble growth rate is determined by statistics on the bubble diameters. It indicates that expanding and shrinking alternate all the time, which has a same trend as in an underwater blast. The nucleation rate of the simulation is estimated at 30 orders of magnitude by calculating the nucleation time and the volume of the bubble void. Radial distribution function in the process of nucleation indicates a measure of the structure of the water system in the process of bubble nucleation.

2020 ◽  
Vol 35 ◽  
pp. 18-28
Author(s):  
Muhammad Rubayat Bin Shahadat ◽  
A.K.M.M. Morshed

Non-equilibrium molecular dynamics simulations have been employed to study the explosive boiling phenomena of water over a hot copper plate. The molecular system was comprised of three sections: solid copper wall, liquid water, and water vapor. A few layers of the liquid water were placed on the solid Cu surface. The rest of the simulation box was filled with water vapor. Initially, the water molecules were equilibrated by using Berendsen thermostat at 298 K. Then heat was given to the copper plate at different temperatures so that explosive boiling occurs. After achieving the equilibrium by performing the previous two steps, the liquid water at 298 K is suddenly dropped on the hot plate. NVE ensemble was used in the simulation and the temperature of the copper plate was controlled to different temperatures with phantom atom thermostat. Four temperatures (400K, 500K, 650 K and 1000K) were taken to study the explosive boiling. The simulation results show that, the explosive boiling temperature of water on Cu plate is 500 K temperature. At this point, the energy flux was found 1.79x108 J/m3 which is very promising with the experimental results. Moreover, if the temperature of the surface was increased the explosive boiling occurred at a faster rate. The simulation results also show that explosive boiling occurs earlier for the hydrophilic surface than hydrophobic surface as for the hydrophilic surface the water attracted the Cu plate more than the hydrophobic surface and so the amount of energy transfer is more for the hydrophilic surface.


Author(s):  
Yu Zou ◽  
Xiulan Huai ◽  
Shiqiang Liang

Molecular dynamics simulation is carried out for the bubble nucleation of water and liquid nitrogen in explosive boiling. The heat is transferred into the simulation system by rescaling the velocity of the molecules. When heat is added into the molecular cluster, liquid initial equilibrium temperature and molecular cluster size can affect the energy conversion in the process of bubble nucleation. The potential energy of the system violently varies at the beginning of the bubble nucleation, and then varies around a fixed value. At the end of the bubble nucleation, the potential energy of the system slowly increases. In the process of bubble nucleation of explosive boiling, the lower initial equilibrium temperature leads to the bigger size of the molecular cluster. With more heat added into the system of the simulation cell, the potential energy varies in a larger range. The primary potential of water molecules includes Lennard-Jones potential energy and Columbic force caused by static charges of oxygen and hydrogen atoms. This is the reason why the bubble nucleation of water is different from that of liquid nitrogen. Pressure controlling is applied in the simulation of water, which makes the bubble more fully extended than that of liquid nitrogen.


2019 ◽  
Vol 2019.72 (0) ◽  
pp. B34
Author(s):  
Takara MOCHIDA ◽  
Miyo SUGATANI ◽  
Takaharu TSURUTA ◽  
Gyoko NAGAYAMA

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 212
Author(s):  
Ming-Jun Liao ◽  
Li-Qiang Duan

The influence of different wettability on explosive boiling exhibits a significant distinction, where the hydrophobic surface is beneficial for bubble nucleation and the hydrophilic surface enhances the critical heat flux. Therefore, to receive a more suitable surface for the explosive boiling, in this paper a hybrid hydrophobic–hydrophilic nanostructured surface was built by the method of molecular dynamics simulation. The onset temperatures of explosive boiling with various coating thickness, pillar width, and film thicknesses were investigated. The simulation results show that the hybrid nanostructure can decrease the onset temperature compared to the pure hydrophilic surface. It is attributed to the effect of hydrophobic coating, which promotes the formation of bubbles and causes a quicker liquid film break. Furthermore, with the increase of the hydrophobic coating thickness, the onset temperature of explosive boiling decreases. This is because the process of heat transfer between the liquid film and the hybrid nanostructured surface is inevitably enhanced. In addition, the onset temperature of explosive boiling on the hybrid wetting surface decreases with the increase of pillar width and liquid film thickness.


2016 ◽  
Vol 30 (01) ◽  
pp. 1550253 ◽  
Author(s):  
Xinjian Liu ◽  
Yu Jin ◽  
Congliang Huang ◽  
Jingfeng He ◽  
Zhonghao Rao ◽  
...  

Temperature and pressure have direct and remarkable implications for drying and dewatering effect of low rank coals such as lignite. To understand the microenergy change mechanism of lignite, the molecular dynamics simulation method was performed to study the self-diffusion of lignite/water under different temperatures and pressure. The results showed that high temperature and high pressure can promote the diffusion of lignite/water system, which facilitates the drying and dewatering of lignite. The volume and density of lignite/water system will increase and decrease with temperature increasing, respectively. Though the pressure within simulation range can make lignite density increase, the increasing pressure showed a weak impact on variation of density.


Sign in / Sign up

Export Citation Format

Share Document