Monte Carlo Study of the Molecular Beam Epitaxy Process for Manufacturing Iron Oxide Nano Scale Films and Similarities With Magnesium Oxide Films

Author(s):  
Ghulam Moeen Uddin ◽  
Bing Sun ◽  
Katherine Ziemer ◽  
Abe Zeid ◽  
Sagar Kamarthi

Functional properties of thin film metal oxides depend upon their stoichiometric and structural uniformity. Controlling the film deposition process can help tune the functionality of these films by ensuring the control over chemistry and structure of the films. The high volume manufacturing of functional devices will benefit from the development of reliable control models developed from research efforts in designing robust manufacturing processes. The use of neural networks as computer models to simulate the molecular beam epitaxy (MBE) of iron oxide thin films is presented in this work. Monte Carlo experiments are used to study the sensitivities and significances of process control variables to the stoichiometric performance indicators. Moreover, we also explore the relationship between growth dynamics of iron oxide (Fe2O3, Fe3O4, and mixed FexOy) and magnesium oxide (MgO) thin films. The common metal adsorption controlled growth mechanism of two films with different structural and stoichiometric complexities were observed and the similarities among the trends of analogous stoichiometric indicators at comparable metal arrival rates of the two films are presented. The dependence of undesirable bonding states of iron and magnesium metals with the film thicknesses was also observed in both processes. The commonalities suggest the potential to use of neural network assisted Monte Carlo analysis to link common atomic-level mechanisms to processing variables in one nano-scale system and use them to predict some level of behavior in other nanoscale processes with similar atomic-level mechanisms.

2014 ◽  
Vol 47 (2) ◽  
pp. 125-140 ◽  
Author(s):  
Ghulam Moeen Uddin ◽  
Katherine S. Ziemer ◽  
Abe Zeid ◽  
Sagar Kamarthi

2017 ◽  
Vol 13 ◽  
pp. 347-350 ◽  
Author(s):  
S. Ali ◽  
◽  
S. Qaseem ◽  
S. Ali ◽  
M. Naeem

2007 ◽  
Vol 301-302 ◽  
pp. 54-57 ◽  
Author(s):  
J.F. Xu ◽  
P.M. Thibado ◽  
C. Awo-Affouda ◽  
R. Moore ◽  
V.P. LaBella

AIP Advances ◽  
2017 ◽  
Vol 7 (10) ◽  
pp. 105020 ◽  
Author(s):  
Z. P. Zhang ◽  
Y. X. Song ◽  
Y. Y. Li ◽  
X. Y. Wu ◽  
Z. Y. S. Zhu ◽  
...  

2012 ◽  
Vol 5 (5) ◽  
pp. 053101 ◽  
Author(s):  
Shinya Ueda ◽  
Soichiro Takeda ◽  
Shiro Takano ◽  
Michio Naito

1989 ◽  
Vol 160 ◽  
Author(s):  
Y.H. Lee ◽  
R.P. Burns ◽  
J.B. Posthill ◽  
K.J. Bachmann

AbstractThe growth of Mo overtayers and Mo-Ni multilayers on single crystal Ni(001) substrates is described. The nucleation and growth processes of these thin films were analyzed by LEED, XPS, AES and SEM and High Resolution AES investigations without breaking vacuum. Growth of Mo-Ni multilayer heterostructures on Ni(001) with ≈20Å periodicity is possible at low temperature (≈200 °C). At high temperature (≈550 °C) the growth proceeds by the Volmer-Weber mechanism preventing the deposition of small period multilayers. Annealing experiments on ultra-thin (<20Å) Mo overiayers deposited at 200 °C show an onset of interdiffusion at ≈ 550°C coupled to the generation of a new surface periodicity.


1999 ◽  
Vol 567 ◽  
Author(s):  
Z. Yu ◽  
R. Droopad ◽  
J. Ramdani ◽  
J.A. Curless ◽  
C.D. Overgaard ◽  
...  

ABSTRACTSingle crystalline perovskite oxides such as SrTiO3 (STO) are highly desirable for future generation ULSI applications. Over the past three decades, development of crystalline oxides on silicon has been a great technological challenge as an amorphous silicon oxide layer forms readily on the Si surface when exposed to oxygen preventing the intended oxide heteroepitaxy on Si substrate. Recently, we have successfully grown epitaxial STO thin films on Si(001) surface by using molecular beam epitaxy (MBE) method. Properties of the STO films on Si have been characterized using a variety of techniques including in-situ reflection high energy electron diffraction (RHEED), ex-situ X-ray diffraction (XRD), spectroscopic ellipsometry (SE), Auger electron spectroscopy (AES) and atomic force microscopy (AFM). The STO films grown on Si(001) substrate show bright and streaky RHEED patterns indicating coherent two-dimensional epitaxial oxide film growth with its unit cell rotated 450 with respect to the underlying Si unit cell. RHEED and XRD data confirm the single crystalline nature and (001) orientation of the STO films. An X-ray pole figure indicates the in-plane orientation relationship as STO[100]//Si[110] and STO(001)// Si(001). The STO surface is atomically smooth with AFM rms roughness of 1.2 AÅ. The leakage current density is measured to be in the low 10−9 A/cm2 range at 1 V, after a brief post-growth anneal in O2. An interface state density Dit = 4.6 × 1011 eV−1 cm−2 is inferred from the high-frequency and quasi-static C-V characteristics. The effective oxide thickness for a 200 Å STO film is around 30 Å and is not sensitive to post-growth anneal in O2 at 500-700°C. These STO films are also robust against forming gas anneal. Finally, STO MOSFET structures have been fabricated and tested. An extrinsic carrier mobility value of 66 cm2 V−11 s−1 is obtained for an STO PMOS device with a 2 μm effective gate length.


Sign in / Sign up

Export Citation Format

Share Document