Micro-Scale Thermal Sensor Manufacturing for Semiconductor Furnace Chamber

Author(s):  
Hongcheon Yang ◽  
Jun Young Kim ◽  
Kwang-Sun Kim

As the demand of complex and small scale semiconductor devices has been increased, the measurement technologies were developed to meet the accurate requirement in semiconductor manufacturing process. The uniform temperature requirement on the wafer is the major factor related to the semiconductor device yield. It is normally acquired from the thermocouples following the inner wall of the chamber. However, since the temperature difference between the wall of equipment and the surface of wafer is existed, the actual wafer temperature is commonly measured by a thermocouple wafer to calibrate the temperature measurement accuracy of the equipment. However, as the diameter of the commercial thermocouple wires is larger than the recently demanded pattern size, the TC wafer has not been able to measure the micro scale temperature differences on the micro patterned wafer. We, therefore, designed a micro-scale thermal sensor. The developed sensor has 37 sets of the measurement points on a 4-inch silicon wafer. The size of the measurement point is approximate to 16 um2. Two alloys, chromel and alumel which are as same as the materials of the K-type thermocouple are used to generate the thermoelectric voltage. The sensor has the temperature range of −200°C to 1300°C. The commercial K-type thermocouple extension wires are connected to the pads of the sensor array and they transfer the analog voltage data to a data acquisition device (DAQ). The sensor was calibrated by comparing the EMF voltage at different temperatures to the standard thermocouple EMF voltage. With the developed micro-scale thermal sensor system, the temperature distribution of the wafer in the furnace chamber is obtained.

Author(s):  
Jun Young Kim ◽  
Kyung Min Jang ◽  
Hong Cheon Yang ◽  
Kwang-Sun Kim

In this research, uniformity of temperature on wafer in fine scale was investigated. A measurement system has been developed, and a sensor as thin-film thermocouple was fabricated using a lift-off process. To generate EMF voltage by Seebeck effect, Chromel and Alumel materials were used for the thermocouple. The system obtains the micro scale temperature from multi-points on the surface of the wafer and then precisely analyzes thermal distribution. A numerical analysis was performed to compare to the measurement method. The experimental results and the analysis shows the system can be used for thermal measurement in a micro scale.


2021 ◽  
Author(s):  
Pavel Shustov ◽  
Anton Artemyev ◽  
Alexander Volokitin ◽  
Ivan Vasko ◽  
Xiao-Jia Zhang ◽  
...  

<p>Recent spacecraft observations of plasma injections reveal abundance of small-scale nonlinear magnetic structures – sub-ion magnetic holes. These structures contribute to magnetosphere-ionosphere coupling and likely responsible for energetic electron scattering. Sub-ion magnetic holes propagate in plasma of two electron components with very different temperatures. Properties of such holes resemble properties of classical magnetosonic solitary waves propagating across the ambient magnetic field, but observations suggest that these holes do not disturb background ions. This study aims to generalize the linear theory of magnetosonic waves by including two electron components. In analog to the electron acoustic mode, cold electrons can act as ions for the generation of magnetosonic mode waves. This unstable electron magnetosonic mode can explain all properties of sub-ion holes in observations. We suggest that sub-ion holes can form during the nonlinear evolution this electron magnetosonic mode. We consider an adiabatic model for investigation of such nonlinear evolution and electron dynamical response to evolving hole electromagnetic field. This model describes slow formation of sub-ion magnetic holes from low-amplitude limit. The adiabatic electron response to such formation can include both electron colling and heating, for populations with different pitch-angles.</p><p>The work was supported by the Russian Scientific Foundation, project 19-12-00313.</p>


2005 ◽  
Vol 62 (7) ◽  
pp. 2568-2579 ◽  
Author(s):  
C. R. Hoyle ◽  
B. P. Luo ◽  
T. Peter

Abstract Recent measurements with four independent particle instruments in cirrus clouds, which formed without convective or orographic influence, report high number densities of ice particles (as high as nice = 50 cm−3) embedded in broad density distributions (nice = 0.1–50 cm−3). It is shown here that small-scale temperature fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions are required to explain these observations. These waves have typical peak-to-peak amplitudes of 1–2 K and frequencies of up to 10 h−1, corresponding to instantaneous cooling rates of up to 60 K h−1. Such waves remain unresolved in even the most advanced state-of-the-art global atmospheric models. Given the ubiquitous nature of these fluctuations, it is suggested that the character of young in situ forming cirrus clouds is mostly determined by homogeneous freezing of ice in solution droplets, driven by a broad range of small-scale fluctuations (period ∼a few minutes) with moderate to high cooling rates (1–100 K h−1).


Author(s):  
T. El-Aguizy ◽  
Sang-Gook Kim

The scale decomposition of a multi-scale system into small-scale order domains will reduce the complexity of the system and will subsequently ensure a success in nanomanufacturing. A novel method of assembling individual carbon nanotube has been developed based on the concept of scale decomposition. Current technologies for organized growth of carbon nanotubes are limited to very small-scale order. The nanopelleting concept is to overcome this limitation by embedding carbon nanotubes into micro-scale pellets that enable large-scale assembly as required. Manufacturing processes have been developed to produce nanopellets, which are then transplanted to locations where the functionalization of carbon nanotubes are required.


Author(s):  
Izhak Bucher ◽  
Eyal Setter

Micro-scale slender swimmers are frequently encountered in nature and recently in micro-robotic applications. The swimming mechanism examined in this article is based on small transverse axi-symmetrical travelling wave deformations of a cylindrical long shell. In very small scale, inertia forces become negligible and viscous forces dominate most propulsion mechanisms being used by micro-organisms and robotic devices. The present paper proposes a compact design principle that provides efficient power to propel and maneuver a micro-scale device. Shown in this paper is a numerical analysis which couples the MEMS structure to the surrounding fluid. Analytical results compare the proposed mechanism to commonly found tail (flagella) driven devices, and a parametric comparison is shown suggesting it has superior performance. Numerical studies are preformed to verify the analytical model. Finally, a macro-scale demonstrator swimming in an environment with similar Reynolds numbers to the ones found in small scale is shown and its behavior in the laboratory is compared to the theory.


2013 ◽  
Vol 25 ◽  
pp. 174-180
Author(s):  
Rajabi Javad ◽  
Norhamidi Muhamad ◽  
Abu Bakar Sulong ◽  
Aziz Hasyimah ◽  
Abdolali Fayyaz ◽  
...  

Micro metal injection molding has become the promising method in powder metallurgy research in order to fabricate small-scale intricate parts in an influential process and competitive cost of mass production. Stainless steel 316 L powders with powder size of 150 nm and 5 μm were mixed with a binder with a water soluble component which consisted of a major fraction of water soluble Polyethylene Glycol (PEG), a minor fraction of polymethyl-methacrylate (PMMA) and some stearic acid has been used as a surfactant. This work aims to investigate the rheological properties of a feedstock which are efficiently characterised by capillary Rheometry to measure apparent viscosities at different temperatures and shear rates. Results obtained by the varying feedstock characteristics, when viscosity decreases by increasing of shear rate at certain temperature feedstock should have a pseudoplastic behaviour. Melt viscosity of the feedstock was decreased by adding nanoscale powders. The reduced (n) values at high temperature with addition of nanoparticles indicated a possible increase in the shear-thinning behavior.


1993 ◽  
Vol 297 ◽  
Author(s):  
Finley R. Shapiro ◽  
Artjit Das

Junction capacitance measurements have been used by many researchers to study the density of states in the mobility gap of hydrogenated amorphous silicon. However, the data analysis methods used for these studies are based on approximate analytic models which may not always be appropriate. In order to understand better the experimental method and the models, we have performed simulations using a numerical simulator which can calculate the complete time-dependent response of an amorphous semiconductor device. The current in a device is simulated as a function of time when a small sinusoidal voltage applied in addition to a DC bias voltage. The out-of-phase and in-phase components of the sinusoidal part of the current are used to calculate the capacitance and series resistance, just as they measured in an experiment. The results of simulated experiments at different temperatures are shown.


1986 ◽  
Vol 108 (3) ◽  
pp. 246-250 ◽  
Author(s):  
J. W. Baish ◽  
P. S. Ayyaswamy ◽  
K. R. Foster

We develop analytical expressions (scaling laws) for the local temperature fluctuations near isolated and countercurrent blood vessels during hyperthermia. These scaling laws relate the magnitude of such fluctuations to the size of the heated region and to the thermal equilibration length of the vessels. A new equilibration length is identified for countercurrent vessels. Significant temperature differences are predicted between the vessels and the immediately adjacent tissue when the equilibration length is comparable to or longer than the size of the heated tissue region. Countercurrent vessels are shown to have shorter equilibration lengths and produce smaller temperature fluctuations than isolated vessels of the same size.


Sign in / Sign up

Export Citation Format

Share Document