The Impact of Electricity Market Conditions on the Value of Flexible CO2 Capture

Author(s):  
Stuart M. Cohen ◽  
Michael E. Webber ◽  
Gary T. Rochelle

Carbon dioxide (CO2) capture with amine scrubbing at coal-fired power plants can remove 90% of the CO2 from flue gas, but operational energy requirements reduce net electrical output by 20–30%. Temporarily reducing the load on energy intensive components of the amine scrubbing process could temporarily increase power output and allow additional electricity sales when prices are high. Doing so could entail additional CO2 emissions, or amine solvent storage can be utilized to allow increased power output without additional CO2 emissions. Price-responsive flexible capture is studied for $0–200/tCO2 and $2–11/MMBTU natural gas using a nominal 500 MW coal-fired facility in the 2010 Electric Reliability Council of Texas (ERCOT) grid. CO2 capture systems use a 7 molal monoethanolamine (MEA) solvent. Venting additional CO2 while increasing electrical output provides significant benefit only at $30–60/tCO2 and when natural gas prices exceed $4/MMBTU. Solvent storage can improve profitability with CO2 capture at higher CO2 emissions penalties, but primarily at low-to-moderate natural gas prices when power plant capacity factor is less than 90%.

Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3098
Author(s):  
Ritter ◽  
Meyer ◽  
Koch ◽  
Haller ◽  
Bauknecht ◽  
...  

In order to achieve a high renewable share in the electricity system, a significant expansion of cross-border exchange capacities is planned. Historically, the actual expansion of interconnector capacities has significantly lagged behind the planned expansion. This study examines the impact that such continued delays would have when compared to a strong interconnector expansion in an ambitious energy transition scenario. For this purpose, scenarios for the years 2030, 2040, and 2050 are examined using the electricity market model PowerFlex EU. The analysis reveals that both CO2 emissions and variable costs of electricity generation increase if interconnector expansion is delayed. This effect is most significant in the scenario year 2050, where lower connectivity leads roughly to a doubling of both CO2 emissions and variable costs of electricity generation. This increase results from a lower level of European electricity trading, a curtailment of electricity from a renewable energy source (RES-E), and a corresponding higher level of conventional electricity generation. Most notably, in Southern and Central Europe, less interconnection leads to higher use of natural gas power plants since less renewable electricity from Northern Europe can be integrated into the European grid.


Author(s):  
John R. Fyffe ◽  
Stuart M. Cohen ◽  
Michael E. Webber

Coal-fired power plants are a source of inexpensive, reliable electricity for many countries. Unfortunately, their high carbon dioxide (CO2) emissions rates contribute significantly to global climate change. With the likelihood of future policies limiting CO2 emissions, CO2 capture and sequestration (CCS) could allow for the continued use of coal while low- and zero-emission generation sources are developed and implemented. This work compares the potential impact of flexibly operating CO2 capture systems on the economic viability of using CCS in gas- and coal-dominated electricity markets. The comparison is made using a previously developed modeling framework to analyze two different markets: 1) a natural-gas dominated market (the Electric Reliability Council of Texas, or ERCOT) and 2) a coal-dominated market (the National Electricity Market, or NEM in Australia). The model uses performance and economic parameters for each power plant to determine the annual generation, CO2 emissions, and operating profits for each plant for specified input fuel prices and CO2 emissions costs. Previous studies of ERCOT found that flexible CO2 capture operation could improve the economic viability of coal-fired power plants with CO2 capture when there are opportunities to reduce CO2 capture load and increase electrical output when electricity prices are high. The model was used to compare the implications of using CO2 capture systems in the two electricity systems under CO2 emissions penalties from 0–100 US dollars per metric ton of CO2. Half the coal-fired power plants in each grid were selected to be considered for a CO2 capture retrofit based on plant efficiency, whether or not SO2 scrubbers are already installed on the plant, and the plant’s proximity to viable sequestration sites. Plants considered for CO2 capture systems are compared with and without inflexible CO2 capture as well as with two different flexible operation strategies. With more coal-fired power plants being dispatched as the marginal generator and setting the electricity price in the NEM, electricity prices increase faster due to CO2 prices than in ERCOT where natural gas-plants typically set the electricity price. The model showed moderate CO2 emissions reductions in ERCOT with CO2 capture and no CO2 price because increased costs at coal-fired power plants led to reduced generation. Without CO2 prices, installing CO2 capture on coal-fired power plants resulted in moderately reduced CO2 emissions in ERCOT as the coal-fired power plants became more expensive and were replaced with less expensive natural gas-fired generators. Without changing the makeup of the plant fleet in NEM, a CO2 price would not currently promote significant replacement of coal-fired power plants because there is minimal excess capacity with low CO2 emissions rates that can displace existing coal-fired power plants. Additionally, retrofitting CO2 capture onto half of the coal-based fleet in NEM did not reduce CO2 emissions significantly without CO2 costs being implemented because the plants with capture become more expensive and were replaced by the coal-fired power plants without CO2 capture. Operating profits at NEM capture plants increased as CO2 price increased much faster than capture plants in ERCOT. The higher rate of increasing profits for plants in NEM is due to the marginal generators in NEM being coal-based facilities with higher CO2 emissions penalties than the natural gas-fired facilities that set electricity prices in ERCOT. Overall, coal-fired power plants were more profitable with CO2 capture systems than without in both ERCOT and NEM when CO2 prices were higher than USD25/ton.


2011 ◽  
Vol 101 (3) ◽  
pp. 247-252 ◽  
Author(s):  
Frank A Wolak

Hourly generation unit-level output levels, detailed information on the technological characteristics of generation units, and daily delivered natural gas prices to all generation units for the California wholesale electricity market before and after the implementation of locational marginal pricing are used to measure the impact of introducing greater spatial granularity in short-term energy pricing. The average hourly number of generation unit starts increases, but both the total hourly energy consumed and total hourly operating costs for all natural gas-fired generation units fall by more than 2 percent after the implementation of locational marginal pricing.


2013 ◽  
Vol 47 (4) ◽  
pp. 2121 ◽  
Author(s):  
C. Papanicolaou ◽  
J. Typou ◽  
J. Ioakeim ◽  
Th. Kotis ◽  
A. Foscolos

The lignite-based power generation contributes 38% towards Greece’s energy independence. Reducing the lignite use while simultaneously importing more expensive natural gas both government deficit and the cost of energy will increase. This surcharge is passed to consumers. Switching to renewable resources invokes an even greater fiscal imbalance, since the costs from the use of wind turbines and solar photovoltaic panels are 87 €/MWh, and 180–284 €/MWh respectively, while natural gas stands at 95 €/MWh and lignite-derived energy is 45 €/MWh.In case of replacing a 300 MW lignite fed power unit with a 300 MW natural gas fed power unit, the loss in income will be 66,540,000 €/year. Coupled with the increased cost of natural gas (31,800,000 €/year) the total is 98,340,000 €/year in addition to the loss of 1235 jobs.Greek authorities intends to replace lignite-fired plants having a total installed capacity of 2531 MW with equivalent natural gas-fired plants resulting in annual total deficit in excess of 787 M€. The targets set by the Greek Ministry of Energy and Climatic Changes to reduce emissions include halving Greek lignite-derived power output from 4800 MW to 2300 MW (>-52%). This move simultaneously increases Greek energy dependence on expensive foreign energy sources and will potentially provoke social unrest at the loss of 12500 jobs with loss of annual income on the order of 670 M€. However, if the existing power output from lignite-fed power plants is maintained, the penalty that PPC (Public Power Corporation) has to pay for the resultant CO2 emissions is significantly smaller (300 M€ at 7.5 €/t of emitted CO2/GWh.Proceeding with the immediate reduction in lignite-fired energy results in economic and social catastrophe (annual income loss:-670 million € + annual CO2 emissions penalty: 348 M€= -322 M€). Lignite-fired plants will become obsolete only when the CO2 emissions penalty exceeds 63.5 €/t of emitted CO2/GWh from a purely economic perspective.


Author(s):  
Jesu´s M. Escosa ◽  
Cristo´bal Cortes ◽  
Luis M. Romeo

Fossil fuel power plants account for about a third of global carbon dioxide emissions. Coal is the major power-generation fuel, being used twice as extensively as natural gas (IEA, 2003). Moreover, on a global scale, coal demand is expected to double over the period to 2030; IEA estimates that 4500 GWe of new installed power will be required. Coal is expected to provide 40% of this figure. It is thus obvious that coal power plants must be operative to provide such amount of energy in the short term, at the same time reducing their CO2 emissions in a feasible manner and increasing their efficiency and capacity. However, the main technologies currently considered to effect CO2 capture, both post-and pre-combustion, introduce a great economic penalty and largely reduce the capacity and efficiency. One of these technologies involves the separation of CO2 from high temperature flue gases using the reversible carbonation reaction of CaO and the calcination of CaCO3. The process is able to simultaneously capture sulfur dioxide. The major disadvantage of this well-known concept is the great amount of energy consumption in the calcinator and auxiliary equipment. This paper proposes a new, feasible approach to supply this energy which leads to an optimal integration of the process within a conventional coal power plant. Calcination is accomplished in a kiln fired by natural gas, whereas a gas turbine is used to supply all the auxiliary power. Flue gases from the kiln and the gas turbine can substitute a significant part of the heat duty of the steam cycle heaters, thus accomplishing feed water repowering of the steam turbine. This novel CO2-capture cycle is proposed to be integrated with aging coal-fired power plants. The paper shows that an optimal integration of both elements represents one of the best methods to simultaneously achieve: a) an increase of specific generating capacity in a very short period of time, b) a significant abatement of CO2 emissions, and c) an increase of plant efficiency in a cost-effective way.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Gosia Stein-Brzozowska ◽  
Christian Bergins ◽  
Allan Kukoski ◽  
Song Wu ◽  
Michalis Agraniotis ◽  
...  

In terms of CO2 emissions, the year 2030 has been addressed as a very crucial deadline for both European Union (EU) and the U.S. Whereas the U.S. Clean Power Plan proposes the reduction of national CO2 emissions from the existing power stations by 30% with respect to 2005, the EU aims at cutback by 40% from their levels in 1990. Due to the restricted emission goals dictated by the European and U.S. energy policies, both energy markets witness currently drastic changes. Whereas the U.S. wants to shift away from coal, the EU shifts away from gas due to high natural gas prices in Europe while drastically increasing the feed-ins from renewable energy sources (RES). In some of the European countries constantly growing installation of renewable energy plants is superseding natural gas-fired power plants and thus causing the electrical grid stabilization to be overtaken by coal fired power stations. On the contrary, the U.S. market due to increasing extraction of shale gas and low natural gas prices puts the gas power plants in favor and poses increasing pressure on closing some coal fired plants. A solution that uses the potential of the existing site and reduces overall emissions is converting from coal into gas-fired power plants, so-called fuel switch. Whereas for the U.S. market the later solution is relevant, in the vast majority of EU Member States the focus is on increasing the flexibility of coal fired power plants. The challenges and technical solutions developed and applied according to the demands of the market in both EU and U.S. are addressed in this paper. Both currently applied technologies and technologies under development are shortly presented.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Bilal Hassan ◽  
Oghare Victor Ogidiama ◽  
Mohammed N. Khan ◽  
Tariq Shamim

A thermodynamic model and parametric analysis of a natural gas-fired power plant with carbon dioxide (CO2) capture using multistage chemical looping combustion (CLC) are presented. CLC is an innovative concept and an attractive option to capture CO2 with a significantly lower energy penalty than other carbon-capture technologies. The principal idea behind CLC is to split the combustion process into two separate steps (redox reactions) carried out in two separate reactors: an oxidation reaction and a reduction reaction, by introducing a suitable metal oxide which acts as an oxygen carrier (OC) that circulates between the two reactors. In this study, an Aspen Plus model was developed by employing the conservation of mass and energy for all components of the CLC system. In the analysis, equilibrium-based thermodynamic reactions with no OC deactivation were considered. The model was employed to investigate the effect of various key operating parameters such as air, fuel, and OC mass flow rates, operating pressure, and waste heat recovery on the performance of a natural gas-fired power plant with multistage CLC. The results of these parameters on the plant's thermal and exergetic efficiencies are presented. Based on the lower heating value, the analysis shows a thermal efficiency gain of more than 6 percentage points for CLC-integrated natural gas power plants compared to similar power plants with pre- or post-combustion CO2 capture technologies.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 543 ◽  
Author(s):  
Manuele Gatti ◽  
Emanuele Martelli ◽  
Daniele Di Bona ◽  
Marco Gabba ◽  
Roberto Scaccabarozzi ◽  
...  

The objective of this study is to assess the technical and economic potential of four alternative processes suitable for post-combustion CO2 capture from natural gas-fired power plants. These include: CO2 permeable membranes; molten carbonate fuel cells (MCFCs); pressurized CO2 absorption integrated with a multi-shaft gas turbine and heat recovery steam cycle; and supersonic flow-driven CO2 anti-sublimation and inertial separation. A common technical and economic framework is defined, and the performance and costs of the systems are evaluated based on process simulations and preliminary sizing. A state-of-the-art natural gas combined cycle (NGCC) without CO2 capture is taken as the reference case, whereas the same NGCC designed with CO2 capture (using chemical absorption with aqueous monoethanolamine solvent) is used as a base case. In an additional benchmarking case, the same NGCC is equipped with aqueous piperazine (PZ) CO2 absorption, to assess the techno-economic perspective of an advanced amine solvent. The comparison highlights that a combined cycle integrated with MCFCs looks the most attractive technology, both in terms of energy penalty and economics, i.e., CO2 avoided cost of 49 $/tCO2 avoided, and the specific primary energy consumption per unit of CO2 avoided (SPECCA) equal to 0.31 MJLHV/kgCO2 avoided. The second-best capture technology is PZ scrubbing (SPECCA = 2.73 MJLHV/kgCO2 avoided and cost of CO2 avoided = 68 $/tCO2 avoided), followed by the monoethanolamine (MEA) base case (SPECCA = 3.34 MJLHV/kgCO2 avoided and cost of CO2 avoided = 75 $/tCO2 avoided), and the supersonic flow driven CO2 anti-sublimation and inertial separation system and CO2 permeable membranes. The analysis shows that the integrated MCFC–NGCC systems allow the capture of CO2 with considerable reductions in energy penalty and costs.


Author(s):  
Stuart M. Cohen ◽  
John Fyffe ◽  
Gary T. Rochelle ◽  
Michael E. Webber

Coal consumption for electricity generation produces over 30% of U.S. carbon dioxide (CO2) emissions, but coal is also an available, secure, and low cost fuel that is currently utilized to meet roughly half of America’s electricity demand. While the world transitions from the existing fossil fuel-based energy infrastructure to a sustainable energy system, carbon dioxide capture and sequestration (CCS) will be a critical technology that will allow continued use of coal in an environmentally acceptable manner. Techno-economic analyses are useful in understanding the costs and benefits of CCS. However, typical techno-economic analyses of post-combustion CO2 capture systems assume continuous operation at a high CO2 removal, which could use 30% of pre-capture electricity output and require new capacity installation to replace the output lost to CO2 capture energy requirements. This study, however, considers the inherent flexibility in post-combustion CO2 capture systems by modeling power plants that vary CO2 capture energy requirements in order to increase electricity output when economical under electricity market conditions. A first-order model of electricity dispatch and a competitive electricity market is used to investigate flexible CO2 capture in response to hourly electricity demand variations. The Electric Reliability Council of Texas (ERCOT) electric grid is used as a case study to compare plant and grid performance, economics, and CO2 emissions in scenarios without CO2 capture to those with flexible or inflexible CO2 capture systems. Flexible CO2 capture systems can choose how much CO2 to capture based on the competition between CO2 and electricity prices and a desire to either minimize operating costs or maximize operating profits. Coal and natural gas prices have varying degrees of predictability and volatility, and the relative prices of these fuels have a major impact on power plant operating costs and the resulting plant dispatch sequence. Because the chosen operating point in a flexible CO2 capture system affects net power plant efficiency, fuel prices also influence which CO2 capture operating point may be the most economical and the resulting dispatch of power plants with CO2 capture. Several coal and natural gas price combinations are investigated to determine their impact on flexible CO2 capture operation and the resulting economic and environmental impacts at the power plant and electric grid levels. This study investigates the costs and benefits of flexible CO2 capture in a framework of a carbon-constrained future where the effects of major energy infrastructure changes on fuel prices are not entirely clear.


Sign in / Sign up

Export Citation Format

Share Document