Influence of Edge-Boundaries on the Cohesive Behaviour of an Adhesive Layer

Author(s):  
Anders Biel ◽  
Tomas Walander ◽  
Ulf Stigh

In comparison with other adhesives e.g. epoxies, polyurethane adhesives (PUR) are soft. In automotive applications, the thickness of PUR-adhesive layers is between about 2 to 5 mm. Since these adhesives cure by moisture, the width of the joints is limited. Often, the width is only marginally larger than the thickness of the layer. In numerical FE-simulations it is now common to represent epoxy adhesive layers by cohesive elements. With this model, both stress distribution and fracture can be modelled using mesh sizes that allows for large-scale analyses. Material properties are usually the result from experiments with coupon type specimens, e.g. the double cantilever beam specimen (DCB). With PUR-adhesives this approach is problematic. The adhesive is very flexible and effects from the edge-boundaries cannot be ignored. In order to study the influence of the edge-boundaries in peel loading, experiments with the DCB-specimens are performed. Specimens with a layer thickness of 3 mm and three different widths between 10.6 mm to 40.6 mm are studied. The PUR-adhesive SikaFlex-UHM is used. All the experiments are performed at a constant loading rate. The cohesive law is measured. The experimental results show that the maximum peel stress is increasing with an increasing width of the specimen, i.e. when the influences from the edges decrease. When the width increases from 10.6 mm to 40.6 mm, the maximum evaluated peak stress increases from about 5 MPa to about 7 MPa. From visual inspections during the experiments it is conjectured that crack growth starts with voids initiating inside the adhesive. At a critical point, the voids rapidly reach the surface and crack growth starts.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bing Sun ◽  
Shun Liu ◽  
Sheng Zeng ◽  
Shanyong Wang ◽  
Shaoping Wang

AbstractTo investigate the influence of the fissure morphology on the dynamic mechanical properties of the rock and the crack propagation, a drop hammer impact test device was used to conduct impact failure tests on sandstones with different fissure numbers and fissure dips, simultaneously recorded the crack growth after each impact. The box fractal dimension is used to quantitatively analyze the dynamic change in the sandstone cracks and a fractal model of crack growth over time is established based on fractal theory. The results demonstrate that under impact test conditions of the same mass and different heights, the energy absorbed by sandstone accounts for about 26.7% of the gravitational potential energy. But at the same height and different mass, the energy absorbed by the sandstone accounts for about 68.6% of the total energy. As the fissure dip increases and the number of fissures increases, the dynamic peak stress and dynamic elastic modulus of the fractured sandstone gradually decrease. The fractal dimensions of crack evolution tend to increase with time as a whole and assume as a parabolic. Except for one fissure, 60° and 90° specimens, with the extension of time, the increase rate of fractal dimension is decreasing correspondingly.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 475
Author(s):  
Lukáš Trávníček ◽  
Ivo Kuběna ◽  
Veronika Mazánová ◽  
Tomáš Vojtek ◽  
Jaroslav Polák ◽  
...  

In this work two approaches to the description of short fatigue crack growth rate under large-scale yielding condition were comprehensively tested: (i) plastic component of the J-integral and (ii) Polák model of crack propagation. The ability to predict residual fatigue life of bodies with short initial cracks was studied for stainless steels Sanicro 25 and 304L. Despite their coarse microstructure and very different cyclic stress–strain response, the employed continuum mechanics models were found to give satisfactory results. Finite element modeling was used to determine the J-integrals and to simulate the evolution of crack front shapes, which corresponded to the real cracks observed on the fracture surfaces of the specimens. Residual fatigue lives estimated by these models were in good agreement with the number of cycles to failure of individual test specimens strained at various total strain amplitudes. Moreover, the crack growth rates of both investigated materials fell onto the same curve that was previously obtained for other steels with different properties. Such a “master curve” was achieved using the plastic part of J-integral and it has the potential of being an advantageous tool to model the fatigue crack propagation under large-scale yielding regime without a need of any additional experimental data.


2000 ◽  
Author(s):  
A. J. Rosakis ◽  
D. Coker ◽  
C. Yu ◽  
M. Ortiz

Abstract In this paper dynamic fracture behavior of unidirectional graphite-epoxy composite plates is investigated experimentally and numerically. Crack propagation experiments are conducted on thick unidirectional graphite-epoxy composite plates subjected to in-plane, symmetric and asymmetric, impact loading. The coherent gradient sensing technique (CGS) is used in conjunction with high-speed photography to visualize the crack growth events. Cracks are found to propagate at subsonic speeds in the Mode-I case, whereas in both mixed mode and Mode-II the crack tip speed clearly exceeds the shear wave speed of the laminate. In the case of symmetric loading (Mode-I), the crack tip speeds approach the Rayleigh wave speed of the composite (1500 m/s), however it never exceeds it as predicted by asymptotic analysis. The situation is found to be entirely different for growing shear (Mode-II) cracks. A shock wave emanating from the crack tip is observed in the optical patterns. This provides direct evidence that the crack propagates faster than the shear wave speed of the composite. The crack tip speed is then observed to jump to a level close to the axial longitudinal wave speed along the fibers (7500 m/s) and then to stabilize to a lower level of approximately 6500 m/s. This speed corresponds to the speed at which the energy release rate required for shear crack growth is non-zero as determined from asymptotic analysis. The CGS interferograms also reveal the existence of large-scale frictional contact of the crack faces behind the moving shear cracks. In addition high speed thermographic measurements are conducted that show concentrated hot spots behind the crack tip indicating crack face frictional contact. Finally, these experiments are modeled by a detailed dynamic finite element calculation involving cohesive elements, newly developed adaptive remeshing using subdivision and edge collapse, composites element, and penalty contact. The numerical calculations are calibrated on the basis of fundamental material properties measured in the laboratory. The numerical methodology is subsequently validated by direct comparison to optical experimental measurements (crack speed record and near tip deformation field structure). For shear crack growth the numerics also reveal the experimentally observed shock wave structure and confirm the optical observation of large-scale crack face contact.


Buildings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 59
Author(s):  
Barbara Francke ◽  
Artur Piekarczuk

This paper analyses the mechanism of the loss of functional properties of water-impermeable products used under ceramic tiles bonded with adhesives. Recorded damages were caused by selected ageing factors and were measured by the loss of adhesion of individual layers of the set. The analyzed phenomenon is found mainly on terraces and balconies located in a mid-European transitional climate, i.e., exposed to temperatures passing through 0 °C for three seasons a year. The tests reflected the action of three main functional factors, i.e., temperatures, water and freeze/thaw cycles. Tested waterproof coatings were grouped into three types, i.e., dispersion, cementitious and reaction resin-based products. Research kits consisted of liquid-applied water-impermeable products laid on a concrete substrate, adhesives and tiles. Comparing the effects of the action of the above-mentioned ageing factors revealed that water has the greatest impact on the reduction of the tensile adhesion strength of such sets. The adhesion of waterproof coatings to the concrete substrate showed higher values than the adhesion between the waterproof coating and the tile adhesive layers, regardless of the coating material. Both for samples not exposed to ageing factors, and for those exposed to such impacts, failure usually occurred in the adhesive layer or between the tile adhesive and the waterproof coating, without damaging the waterproof layer. The loss of adhesion of finishing layers to the substrate was not accompanied by a loss of tightness of the waterproof coating. The impact of negative water ageing was particularly destructive on the adhesion of cement-based tile adhesives to waterproof coatings made of polymer with a water dispersion of absorbability above 7% (V/V). There was no correlation among the results of adhesion of the finishing layers to the waterproofing layer after the action of the three ageing factors, i.e., water contact, elevated temperature and freeze/thaw cycles.


2020 ◽  
Vol 1012 ◽  
pp. 412-417
Author(s):  
Misael Souto de Oliveira ◽  
Antonio Almeida Silva ◽  
Marco Antonio dos Santos ◽  
Jorge Antonio Palma Carrasco ◽  
João Vitor de Queiroz Marques

In this work the calibration of an Alternative Current Potential Drop (ACPD) system was performed to monitore laboratory mechanical tests on marine environment under cathodic protection. The calibration was done on CT type specimens of API 5L X65 steel dimensioned according to ASTM E1820 standard., The crack propagation during a tensile test with displacement control in an ACPD equipment was monitored through the performs points collection by two channels: one that monitors the crack growth and another that monitors a region free of crack. Using a profile projector and graphical data processing and analysis software, the area of ​​the fracture surface of the specimen was meansured, which allowed to correlate a crack size with a corresponding value of potential drop and the calibration curve. In order to verify verify the efficacy and precision of the technique, step loading tests were performed on API 5L X65 steel test specimens, submerged in synthetic sea water under the overprotection potential of-1300mVAg/AgCl. The results of the calibration showed few dispersed errors, and the main factors of this dispersion may be related to the geometry of the specimen and with variations in current flow density, which is influenced by corners and edges and by the presence of pick-up inductive. The calibration and its effectiveness can be verified through the results of the tests in marine environment, presenting crack lengths close to the actual values, confirming the effectiveness of the ACPD technique.


1987 ◽  
Vol 53 (492) ◽  
pp. 1644-1650
Author(s):  
Kikuo KISHIMOTO ◽  
Atsushi KIMURA ◽  
Shigeru AOKI ◽  
Masaru SAKATA

Sign in / Sign up

Export Citation Format

Share Document