CFD Analysis of a Fluidized Bed Reactor for Industrial Application

Author(s):  
Anna Vaccari ◽  
Michele Pinelli ◽  
Luca Pirani ◽  
Nicola Gandolfi

The fluidized bed reactors are widely used in chemical, mining and pharmaceutical industries and energy applications because of the low pressure drop, the uniform distribution of temperature and of high-speed mass transfer of energy and speed. Fluidization behavior depends on the reactor geometry and internals as well as the particle size distribution and physical properties of the process material. This paper presents a 3D fluid dynamic simulation of a fluidized bed reactor for the pharmaceutical processing of powder, such as mixing, granulation and drying. Firstly, sensitivity analyses based on a literature test-case were performed, for the validation of the computational model and the development of the additional components required for the simulation of a real fluidized bed reactor. Then an unsteady URANS 3D simulation of a modular laboratory-scale fluid bed reactor, product of IMA S.p.A. Active Division, was performed to evaluate the velocity field and particle distribution of the powder involved in the mixing process.

1989 ◽  
Vol 21 (4-5) ◽  
pp. 157-165 ◽  
Author(s):  
F. Ehlinger ◽  
J. M. Audic ◽  
G. M. Faup

The characterization of the biofilm of an anaerobic fluidized-bed reactor was completed under standard conditions. The distribution of the fixed protein concentration depended on the level in the reactor. The protein concentration reached 1520 µg.g−1 of support at the top of the reactor and only 1200 µg.g−1 at the bottom after 504 hours of operation but the specific activity of the biofilm was 33×10−4 µM acetate.h−1.mg−1 proteins at the bottom and only 26×10−4 µM.h−1.mg−1 at the top. The efficiency of a fluidized bed reactor and the composition of the biofilm changed with an increase of the pH from 7 to 8.5 during the seeding of the support material. Future development of the biofilm and the specific activity of the support were affected.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 88
Author(s):  
Motoyuki Kawase ◽  
Aldo Rona

A proof of concept is provided by computational fluid dynamic simulations of a new recirculating type casing treatment. This treatment aims at extending the stable operating range of highly loaded axial compressors, so to improve the safety of sorties of high-speed, high-performance aircraft powered by high specific thrust engines. This casing treatment, featuring an axisymmetric recirculation channel, is evaluated on the NASA rotor 37 test case by steady and unsteady Reynolds Averaged Navier Stokes (RANS) simulations, using the realizable k-ε model. Flow blockage at the recirculation channel outlet was mitigated by chamfering the exit of the recirculation channel inner wall. The channel axial location from the rotor blade tip leading edge was optimized parametrically over the range −4.6% to 47.6% of the rotor tip axial chord c z . Locating the channel at 18.2% c z provided the best stall margin gain of approximately 5.5% compared to the untreated rotor. No rotor adiabatic efficiency was lost by the application of this casing treatment. The investigation into the flow structure with the recirculating channel gave a good insight into how the new casing treatment generates this benefit. The combination of stall margin gain at no rotor adiabatic efficiency loss makes this design attractive for applications to high-speed gas turbine engines.


2014 ◽  
Vol 106 ◽  
pp. 231-241 ◽  
Author(s):  
Andrés Mahecha-Botero ◽  
Tingwen Li ◽  
Franz Haseidl ◽  
Alexander Nguyen ◽  
John R. Grace

2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Manuel Wuerth ◽  
Moritz Becker ◽  
Peter Ostermeier ◽  
Stephan Gleis ◽  
Hartmut Spliethoff

Thermochemical energy storage (TCES) represents one of the most promising energy storage technologies, currently investigated. It uses the heat of reaction of reversible reaction systems and stands out due to the high energy density of its storage materials combined with the possibility of long-term storage with little to no heat losses. Gas–solid reactions, in particular the reaction systems CaCO3/CaO, CaO/Ca(OH)2 and MgO/Mg(OH)2 are of key interest in current research. Until now, fixed bed reactors are the state of the art for TCES systems. However, fluidized bed reactors offer significant advantages for scale-up of the system: the improved heat and mass transfer allows for higher charging/discharging power, whereas the favorable, continuous operation mode enables a decoupling of storage power and capacity. Even though gas–solid fluidized beds are being deployed for wide range of industrial operations, the fluidization of cohesive materials, such as the aforementioned metal oxides/hydroxides, still represents a sparsely investigated field. The consequent lack of knowledge of physical, chemical, and technical parameters of the processes on hand is currently a hindering aspect for a proper design and scale-up of fluidized bed reactors for MW applications of TCES. Therefore, the experimental research at Technical University of Munich (TUM) focuses on a comprehensive approach to address this problem. Preliminary experimental work has been carried out on a fixed bed reactor to cover the topic of chemical cycle stability of storage materials. In order to investigate the fluidization behavior of the bulk material, a fluidized bed cold model containing a heat flux probe and operating at atmospheric conditions has been deployed. The experimental results have identified the heat input and output as the most influential aspect for both the operation and a possible scale-up of such a TCES system. The decisive parameter for the heat input and output is the heat transfer coefficient between immersed heat exchangers and the fluidized bed. This coefficient strongly depends on the quality of fluidization, which in turn is directly related to the geometry of the gas distributor plate. At TUM, a state-of-the-art pilot fluidized bed reactor is being commissioned to further investigate the aforementioned aspects. This reactor possesses an overall volume of 100 L with the expanded bed volume taking up 30 L. Two radiation furnaces (64 kW) are used to heat the reactor. The heat of reaction of the exothermal hydration reaction is removed by water, evaporating in a cooling coil, immersed in the fluidized bed. Fluidization is being achieved with a mixture of steam and nitrogen at operating temperatures of up to 700 °C and operating pressures between −1 and 6 bar(g). The particle size is in the range of d50 = 20 μm. While initial experiments on this reactor focus on optimal operating and material parameters, the long-term goal is to establish correlations for model design and scale-up purposes.


1994 ◽  
Vol 29 (5-6) ◽  
pp. 73-80 ◽  
Author(s):  
Jaakko A. Puhakka ◽  
Päivi M. Mäkinen ◽  
Margareta Lundin ◽  
John F. Ferguson

Biotransformations and treatment of several chlorinated, hydroxylated and methoxylated monoaromatic compounds were studied in batch bottle bioassays and continuous-flow fluidized-bed reactors. With the aerobic enrichment, polychlorinated phenols were biodegraded with simultaneous release of inorganic chloride in amounts equal to mineralization stoichiometrics. Aerobic removal of 4,5-dichlorocatechol and 4,5- dichlorovanillin were associated with the release of inorganic chlorine. The aerobic enrichment showed no activity against mono- or di-O-methylated phenols. With the anaerobic enrichment, reductive transformations of these compounds were observed. These transformations included reductive dechlorinations, de-O-methylations and dehydroxylations. High-rate operation of an aerobic fluidized-bed reactor resulted in over 99.7% biodégradation of polychlorophenols. In the anaerobic fluidized-bed reactor, over 95% removal of chlorophenols with no apparent accumulation of lower chlorinated phenols indicated complete dechlorination.


2018 ◽  
Vol 41 (2) ◽  
pp. 35-40
Author(s):  
K.V. Simeiko

Supply of heat through combustion of organic fuel is impossible or economically unviable for the raw of high temperature processes due to it’s technological peculiarities. Some of these processes can be carried out in electrothermal fluidized bed reactors. Development of appropriate mathematical model for heat balance will allow prognostication of capacity needed to carry out specific process and improvement of electrothermal fluidized bed reactor. During the development of mathematical model methods of heat-mass exchange theory were applied.  Verification of appropriateness for mathematical model was carried out through comparison of experimental results and calculated values of the amount of heat needed to perform the process of methane pyrolysis in electrothermal fluidized bed and coefficient of thermal efficiency of electrothermal fluidized bed reactor. Comparison with real thermochemical process in electrothermal fluidized bed reactor confirms the appropriateness of mathematical model. Average deviation of mathematical model of heat balance and coefficient of thermal efficiency from obtained experimental values is 5…7 % and 6…9 % respectively. Proposed mathematical model can be applied in design of electrothermal fluidized bed reactors.


2019 ◽  
Vol 268 ◽  
pp. 02002
Author(s):  
Chew-Sang Law ◽  
Mohd Azlan Hussain

A study was performed to improve the model for metallocene catalyzed polyolefin polymerization in fluidized bed reactor by adapting multi-scale modeling approach. Monomer concentration and reactor temperature was predicted using kinetic model of polypropylene homopolymerization coupled with well mixed reactor models of fluidized bed reactor. Well mixed model typically used for Ziegler-Nata was selected as supported homogeneous metallocene exhibited heterogeneous property similar to ZN catalyst. Result of simulation showed that model was able to predict reaction temperature accurate with around 3% over-prediction of reactor temperature, which is more accurate than previous model. Model predicted decrease in final monomer concentration from 0.9929 mol/s to 0.986 mol/s when initial reactor was raised from 25C to 75C.


Sign in / Sign up

Export Citation Format

Share Document