Molecular Dynamics Simulations of Nanobubbles Formation Near the Substrate in a Liquid With Dissolved Gas

Author(s):  
Elena F. Moiseeva ◽  
Victor L. Malyshev ◽  
Dmitriy F. Marin ◽  
Nail A. Gumerov ◽  
Iskander Sh. Akhatov

Nanobubbles appearing on the interface between liquid and the hydrophobic substrate play an important role in various natural and industrial processes. The current study presents the MD simulations of surface nanobubbles on the liquid-solid interface, where the liquid phase consists of argon and dissolved neon, while the gaseous phase consists of neon and argon vapor. The interactions between all the particles are determined by the Lennard-Jones potential. The contact angle is studied as a function of the Lennard-Jones parameters for the liquid-solid and gas-solid interactions. Moreover, the influence of gas concentration on the system behavior is studied. The simulations are performed for the systems of tens nm in size, which contain up to 8 million molecules. The computations are accelerated using modern computational methods and algorithms as well as using high-performance hardware such as graphic processors.

2019 ◽  
Vol 9 (4) ◽  
pp. 14-17
Author(s):  
Piotr Wójcicki ◽  
Tomasz Zientarski

The article proposes a method of controlling the movement of a group of robots with a model used to describe the interatomic interactions. Molecular dynamics simulations were carried out in a system consisting of a moving groups of robots and fixed obstacles. Both the obstacles and the group of robots consisted of uniform spherical objects. Interactions between the objects are described using the Lennard-Jones potential. During the simulation, an ordered group of robots was released at a constant initial velocity towards the obstacles. The objects’ mutual behaviour was modelled only by changing the value of the interaction strength of the potential. The computer simulations showed that it is possible to find the optimal value of the potential impact parameters that enable the implementation of the assumed robotic behaviour scenarios. Three possible variants of behaviour were obtained: stopping, dispersing and avoiding an obstacle by a group of robots.


Volume 4 ◽  
2004 ◽  
Author(s):  
Aaron P. Wemhoff ◽  
Van P. Carey

Surface tension determination of liquid-vapor interfaces of polyatomic fluids using traditional methods has shown to be difficult due to the requirement of evaluating complex intermolecular potentials. However, analytical techniques have recently been developed that determine surface tension solely by means of the characteristics of the interfacial region between the bulk liquid and vapor regions. A post-simulation application of the excess free energy density integration (EFEDI) method was used for analysis of the resultant density profile of molecular dynamics (MD) simulations of argon using a simple Lennard-Jones potential and diatomic nitrogen using a two-center Lennard-Jones potential. MD simulations were also run for an approximation of nitrogen using the simple Lennard-Jones potential. In each MD simulation, a liquid film was initialized between vapor regions and NVE-type simulations were run to equilibrium. The simulation domain was divided into bins across the interfacial region for fluid density collection, and the resultant interfacial region density profile was used for surface tension evaluation. Application of the EFEDI method to these MD simulation results exhibited good approximations to surface tension as a function of temperature for both a simple and complex potential.


2016 ◽  
Vol 1817 ◽  
Author(s):  
Sergio Mejía-Rosales ◽  
Carlos Fernández-Navarro

ABSTRACTWe present a set of Molecular Dynamics simulations of the axial elongation of gold nanowires, and the compression of silver decahedral nanowires by a carbon AFM tip. We used Sutton and Chen multibody potentials to describe the metallic interactions, a Tersoff potential to simulate the carbon-carbon interactions, and a 6-12 Lennard-Jones potential to describe the metal-carbon interactions. In the elongation simulations, gold nanowires were subjected to strain at several rates, and we concentrated our attention in the specific case of a wire with an atomistic arrangement based on the intercalation of icosahedral motifs forming a Boerdijk-Coxeter (BCB) spiral, and compare it against results of nanowires with fcc structure and (001), (011), and (111) orientations. We found that the BCB nanowire is more resistant to breakage than the fcc nanowires. In the simulations of lateral compression, we made a strain analysis of the trajectories, finding that when a gold decahedral nanowire is compressed by the AFM tip in a direction parallel to a (100) face, the plastic deformation regime is considerably larger than in the case of compression exerted in a direction parallel to a twin plane, where the fracture of the wire comes almost immediately after the elastic range ends. The strain distribution and elastic response in the compression of nanoparticles with different geometries is also discussed.


2013 ◽  
Vol 845 ◽  
pp. 345-349
Author(s):  
I Ling Chang ◽  
Ming Liang Liao ◽  
Chi Hsiang Chuang

This paper used molecular dynamics (MD) simulations to investigate influences of cone arrangements (including the cone orientation, arrangement pattern and cone spacing) on hydrogen adsorption of open-tip carbon nanocone (CNC) arrays at temperatures of 100 and 300 K. To consider curvature effects for the cone structure of the CNCs, the curvature-modified Lennard-Jones potential parameters were adopted to describe the interactions between the hydrogen and carbon atoms. It was found that the cone orientation (aligned, opposite, and alternate) does not have obvious influences on hydrogen adsorption of the CNC arrays. The arrangement pattern (square and triangular), however, had significant influences on the hydrogen adsorption. The square-patterned CNC array was noticed to have higher storage weight percentage than the triangular-patterned one. Regarding to the influences of cone spacing, the storage weight percentage grew with the increase of the cone spacing and arrived at a stable value as the cone spacing reached a certain critical value. The influences cone arrangements could be ascribed to repulsive effects, which are evident as cone spacing become narrow.


1990 ◽  
Vol 187 ◽  
Author(s):  
F.H. Streitz ◽  
K. Sieradzki ◽  
R. C. Cammarata

AbstractWe report on the results of molecular dynamics simulations of thin unsupported fcc films ranging in thickness from 20 layers to a monolayer. The films were oriented with either (001) or (111) free surface normals. The atomic interactions were modelled using a standard Lennard-Jones potential and a short range analytic form of the embedded atom potential. The elastic moduli of the films were determined by measuring their response to very low levels of applied stress.We find that the embedded atom and Lennard-Jones results are in relative agreement for (001) films and qualitative disagreement for (111) oriented films. We relate these differences to the nature of the interatomic potential and the thermodynamic instability of the (001) surface.


2005 ◽  
Vol 16 (02) ◽  
pp. 253-258 ◽  
Author(s):  
L. E. ARARIPE ◽  
A. DIEHL ◽  
J. S. ANDRADE ◽  
R. N. COSTA FILHO

We perform extensive molecular dynamics simulations to study the mass size distribution of a two-dimensional fragmentation process. Our model consists of a large number of particles interacting through the Lennard–Jones potential. The fragmentation is induced by suddenly imposing a radial component on the particles' velocities, in order to mimic an explosion phenomenon. We then investigate the effect of the input energy on the resulting mass distribution of fragments.


Author(s):  
Zhaohui Qin

Molecular dynamics (MD) simulations of a Lennard-Jones liquid flowing through a rotating nano-scale channel are presented.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Lina Kulakova ◽  
Georgios Arampatzis ◽  
Panagiotis Angelikopoulos ◽  
Panagiotis Hadjidoukas ◽  
Costas Papadimitriou ◽  
...  

Computation ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 107
Author(s):  
Kyle Stevens ◽  
Thien Tran-Duc ◽  
Ngamta Thamwattana ◽  
James M. Hill

The Lennard–Jones potential and a continuum approach can be used to successfully model interactions between various regular shaped molecules and nanostructures. For single atomic species molecules, the interaction can be approximated by assuming a uniform distribution of atoms over surfaces or volumes, which gives rise to a constant atomic density either over or throughout the molecule. However, for heterogeneous molecules, which comprise more than one type of atoms, the situation is more complicated. Thus far, two extended modeling approaches have been considered for heterogeneous molecules, namely a multi-surface semi-continuous model and a fully continuous model with average smearing of atomic contribution. In this paper, we propose yet another modeling approach using a single continuous surface, but replacing the atomic density and attractive and repulsive constants in the Lennard–Jones potential with functions, which depend on the heterogeneity across the molecules, and the new model is applied to study the adsorption of coronene onto a graphene sheet. Comparison of results is made between the new model and two other existing approaches as well as molecular dynamics simulations performed using the LAMMPS molecular dynamics simulator. We find that the new approach is superior to the other continuum models and provides excellent agreement with molecular dynamics simulations.


Sign in / Sign up

Export Citation Format

Share Document