Optical Analyses of Microfluidic Tunable Liquid Prisms for Enhanced Solar Energy Collection

2014 ◽  
Author(s):  
Abhishek Wadhwa ◽  
Sung-Yong Park

We present optical analyses of a microfluidic tunable liquid prism to find its optimized configuration that can achieve wider beam steering as well as less reflection loss and eventually maximize solar energy capture without mechanical tracking. For this study, four different prism configurations are compared from single to quad-stacked ones with various refractive indices of the liquids filled in the prism. Its beam steering capability can be improved by increasing the refractive index ratio between the liquids used and by using higher number of the stacked prisms. The quad-stacked prism is able to steer incoming sunlight with an incident angle of a α ≤ ± 75° at an apex angle of φ ≤ ± 30°, which represents more than 5 times improvement, when it is compared to the single prism using the same liquids. For appropriate liquid material selection, the effect of refractive index ratio, r = n2/n1, on beam steering was additionally studied. However, one considerable issue is the fact that the better beam steering, the more reflection loss. This is because both higher number of interfaces and larger refractive index ratio make more reflection at each of the interfaces. Our reflectance analysis showed that the quad prism performs inferior to the double prism until α = ± 32°, while being of superior beam steering performance. To further reduce the solar energy loss through the quad prism, a modified configuration is proposed with a thin film added to the interfaces. 50 % of the total reflection was reduced. Our technology promises an alternative to a low-cost and high-efficiency solar tracking system capable of beam steering as wide as ± 75° and reflection loss as low as 4.5%, during all daily tracking of the sun.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Guiming Peng ◽  
Xueqing Xu ◽  
Gang Xu

The ramping solar energy to electricity conversion efficiencies of hybrid organic-inorganic perovskite solar cells during the last five years have opened new doors to low-cost solar energy. The record power conversion efficiency has climbed to 19.3% in August 2014 and then jumped to 20.1% in November. In this review, the main achievements for perovskite solar cells categorized from a viewpoint of device structure are overviewed. The challenges and prospects for future development of this field are also briefly presented.


Author(s):  
Salah Obayya ◽  
Nihal Fayez Fahmy Areed ◽  
Mohamed Farhat O. Hameed ◽  
Mohamed Hussein Abdelrazik

The solar energy is able to supply humanity energy for almost another 1 billion years. Optical nano-antennas (ONAs) are an attractive technology for high efficiency, and low-cost solar cells. These devices can be classified to semiconductor nano-wires and metallic nano-antenna. Extensive studies have been carried out on ONAs to investigate their ability to harvest solar energy. Inspired by these studies, the scope of the chapter is to highlight the latest designs of the two main types of ONAs. The metallic nano-antennas are discussed based on the following points: plasmon, modeling, and performance of antenna designs using different configurations and materials. Moreover, the semiconductor nano-wires are studied thoroughly in terms of photonic crystals, antenna design with different patterns, nano-wire forms and materials. Also, the applications of ONAs and their fabrication aspects such as diode challenges are presented in detail. Finally, three novel designs of ONAs are presented and numerically simulated to maximize the harvesting efficiency.


2018 ◽  
Vol 7 (3.18) ◽  
pp. 11
Author(s):  
Musse Mohamud Ahmed ◽  
Mohammad Kamrul Hasan ◽  
Mohammad Shafiq

The main purpose of this paper is to present a novel idea that is based on design and development of an automatic solar tracker system that tracks the Sun's energy for maximum energy output achievement. In this paper, a novel automatic solar tracking system has been developed for small-scale solar energy system. The hardware part and programming part have been concurrently developed in order for the solar tracking system to be possible for it to operate accurately. Arduino Uno R3, Sensor Shield V4 Digital Analog Module, LDR (Light Dependent Resistor), MPU-6050 6DOF 3 Axis Gyroscope has been used for tracking the angular sun movement as shown in Fig. 1. Accelerometer, High-Efficiency Solar Panel, and Tower Pro MG90S Servo Motor have been used for the hardware part. High-level programming language has been embedded in the hardware to operate the tracking system effectively. The tracking system has shown significant improvement of energy delivery to solar panel comparing to the conventional method. All the results will be shown in the full paper. There are three contributions the research presented in this paper which are, i.e. perfect tracking system, the comparison between the static and tracking system and the development of Gyroscope angular movement system which tracks the angular movement of the sun along with another tracking system.  


2019 ◽  
Vol 7 (36) ◽  
pp. 20494-20518 ◽  
Author(s):  
Bo Li ◽  
Lin Fu ◽  
Shuang Li ◽  
Hui Li ◽  
Lu Pan ◽  
...  

High-efficiency and low-cost perovskite solar cells (PSCs) are desirable candidates for addressing the scalability challenge of renewable solar energy.


2012 ◽  
Vol 605-607 ◽  
pp. 433-437
Author(s):  
Hong Yang ◽  
Wen Qi Huang ◽  
Zhen Fei Wang ◽  
Long Guang Chen ◽  
Yao Yin

In order to improve the efficiency of solar module, we have designed the Fresnel lens concentrated system and charging system, their schematic diagrams are depicted detailed in this paper. The experimental data show that adding Fresnel lens parts can improve the solar panels' power from 130% to 200% and incident angle can affect solar panels' voltage current characteristic deeply. All of these results can give some support to design the tracking system.


2020 ◽  
Author(s):  
Orlando Soares de Santana Filho ◽  
Carlos Henrique Mota Martins ◽  
Thiago Henrique Felix C. Ribeiro Conceição ◽  
Alex Vinicius dos Reis Freitas Silva ◽  
Adriano Honorato Braga ◽  
...  

Solar energy is a renewable and inexhaustible source, besidescausing damage to nature, being clean and sustainable.Transform the electromagnetic radiation emitted by the Sunelectrical energy are used solar panels. In order to improveefficiency and performance of this capture, a low-cost wasbuilt, a single-axis solar tracking system for photovoltaicpanels. The solution uses the automation Arduino UNO R3,open hardware, two photosensitive sensors LDR GL-5528, inaddition to a servo motor capable of moving the surface of aphotovoltaic plate according to the detection of the highestincidence of light. The circuit and its components wereprogrammed using the Arduino IDE software, version 1.8.11.As a result, it was possible to follow the movement of thesun, differing from a static panel, thus ensuring greater sunshineon the solar plate, as a result of this traceablecontrol prototype.


2016 ◽  
Vol 7 (2) ◽  
pp. 233-245 ◽  
Author(s):  
Flávia V. Barbosa ◽  
João L. Afonso ◽  
Filipe B. Rodrigues ◽  
José C. F. Teixeira

Abstract. Solar Energy has been, since the beginning of human civilization, a source of energy that raised considerable interest, and the technology used for their exploitation has developed constantly. Due to the energetic problems which society has been facing, the development of technologies to increase the efficiency of solar systems is of paramount importance. The solar concentration is a technology that has been used for many years by the scientist, because this system enables the concentration of solar energy in a focus, which allows a significant increase in energy intensity. The receiver, placed at the focus of the concentrator, can use the stored energy to produce electrical energy through Stirling engine, for example, or to produce thermal energy by heating a fluid that can be used in a thermal cycle. The efficiency of solar concentrators can be improved with the addition of a dual axis solar tracker system which allows a significant increase in the amount of stored energy. In response to the aforementioned, this paper presents the design and construction of a solar dish concentrator with tracking system at low cost, the optical and thermal modelling of this system and a performance analysis through experimental tests. The experimental validation allows to conclude that the application of a tracking system to the concentrator is very important since a minimum delay of the solar radiation leads to important losses of system efficiency. On the other hand, it is found that the external factors can affect the final results which include the optical and geometrical properties of the collector, the absorptivity and the position of the receiver as well as the weather conditions (essentially the wind speed and clouds). Thus, the paper aims to present the benefits of this technology in a world whose the consumption of energy by fossil fuels is a real problem that society needs to face.


2019 ◽  
Vol 13 (4) ◽  
pp. 636-653 ◽  
Author(s):  
Fenghua Liu ◽  
Yijian Lai ◽  
Binyuan Zhao ◽  
Robert Bradley ◽  
Weiping Wu

Abstract Solar powered steam generation is an emerging area in the field of energy harvest and sustainable technologies. The nano-structured photothermal materials are able to harvest energy from the full solar spectrum and convert it to heat with high efficiency. Moreover, the materials and structures for heat management as well as the mass transportation are also brought to the forefront. Several groups have reported their materials and structures as solutions for high performance devices, a few creatively coupled other physical fields with solar energy to achieve even better results. This paper provides a systematic review on the recent developments in photothermal nanomaterial discovery, material selection, structural design and mass/heat management, as well as their applications in seawater desalination and fresh water production from waste water with free solar energy. It also discusses current technical challenges and likely future developments. This article will help to stimulate novel ideas and new designs for the photothermal materials, towards efficient, low cost practical solar-driven clean water production.


1989 ◽  
Vol 7 (4) ◽  
pp. 251-261
Author(s):  
Takashi Horigome ◽  
Hiroshi Sugimoto

Solar energy development at the New Energy and Industrial Technology Development Organization (NEDO) is concerned with reducing the cost of photovoltaic (PV) systems by promoting low cost, high efficiency solar cell manufacturing technology and photovoltaic system demonstations. The first involves reducing the cost of solar cell modules by producing better silicon materials and improving fabrication techniques. A number of demonstration systems are in operation.


2018 ◽  
Vol 39 (3) ◽  
pp. 273-283
Author(s):  
Haythem Bany Salameh ◽  
Khaled Jawarneh ◽  
Ahmed Musa

Abstract In this paper, a new design for a demultiplexer device for Wavelength Division Multiplexing (WDM) communication system is proposed. The proposed device consists of an inhomogeneous layer of a semiconductor material with refractive index that is graded according to a given profile. To minimize the size of the proposed device and achieve better spatial shift between the multiplexed wavelengths, several mirrors are placed at different locations inside the device. These mirrors will force the multiplexed light to be reflected before reaching the total internal reflection point. By controlling the different design parameters such as incident angle, the refractive index profile, etc., a small size, low cost and less complexity WDM device can be realized. In the design process, we exploits the ray’s spatial shift that results from the introduced mirrors and the material dispersion. In addition, the effect of the aforementioned design parameters on the amount of spatial shift between the adjacent wavelengths and the size of the device has been investigated. Results show that the proposed design achieves higher spatial shift as well as smaller device size in comparison with precedent WDM device designs.


Sign in / Sign up

Export Citation Format

Share Document