scholarly journals Development of a solar concentrator with tracking system

2016 ◽  
Vol 7 (2) ◽  
pp. 233-245 ◽  
Author(s):  
Flávia V. Barbosa ◽  
João L. Afonso ◽  
Filipe B. Rodrigues ◽  
José C. F. Teixeira

Abstract. Solar Energy has been, since the beginning of human civilization, a source of energy that raised considerable interest, and the technology used for their exploitation has developed constantly. Due to the energetic problems which society has been facing, the development of technologies to increase the efficiency of solar systems is of paramount importance. The solar concentration is a technology that has been used for many years by the scientist, because this system enables the concentration of solar energy in a focus, which allows a significant increase in energy intensity. The receiver, placed at the focus of the concentrator, can use the stored energy to produce electrical energy through Stirling engine, for example, or to produce thermal energy by heating a fluid that can be used in a thermal cycle. The efficiency of solar concentrators can be improved with the addition of a dual axis solar tracker system which allows a significant increase in the amount of stored energy. In response to the aforementioned, this paper presents the design and construction of a solar dish concentrator with tracking system at low cost, the optical and thermal modelling of this system and a performance analysis through experimental tests. The experimental validation allows to conclude that the application of a tracking system to the concentrator is very important since a minimum delay of the solar radiation leads to important losses of system efficiency. On the other hand, it is found that the external factors can affect the final results which include the optical and geometrical properties of the collector, the absorptivity and the position of the receiver as well as the weather conditions (essentially the wind speed and clouds). Thus, the paper aims to present the benefits of this technology in a world whose the consumption of energy by fossil fuels is a real problem that society needs to face.

2018 ◽  
Vol 24 (2) ◽  
pp. 134
Author(s):  
Robby Rachmatullah ◽  
Dessyana Kardha ◽  
Dani Triwiyanto

The transfer of electrical energy sources from non-renewable fossil fuels to alternative renewable fuels can be made by utilizing solar energy. The working system of arduino uno solar tracking system for STMIK AUB garden lights is by capturing solar energy through solar panels which are then stored inside the battery where the charging process is controlled by solar charge controller. LDR functions to receive and identify the radiated light quantities which are then forwarded into the arduino uno and processed to drive the DC motor that has become one with the solar panel. If the day begins to darken the LDR will inform the arduino uno and then it will be processed by arduino uno to turn on the DC light.


2015 ◽  
Vol 813-814 ◽  
pp. 992-996
Author(s):  
P. Chandra Dheeraj ◽  
B. Avinash ◽  
G. Sai Pavan Kumar ◽  
P.S. Sivasakthivel ◽  
M. Venkatesan

With the fast depletion of the conventional energy resources and the amount of pollution it is creating, the entire world is looking for an alternative non-conventional and a renewable energy to lessen the dependency on the conventional energy resources. In this scenario, utilizing solar energy which is abundant in nature is gaining high attention. One way of utilizing solar energy is by using solar photovoltaic cells which convert light energy into electrical energy, but they are too costly and less efficient. Many techniques are being developed to reduce the cost and improve the efficiency in harnessing solar energy. Sun tracking technique is one of the methods to increase the efficiency of solar cells. The present work is focused on providing a microcontroller based automatic two-axis sun tracker using Photodiodes as sensors to track sun. The system is assisted with a manual control through LabVIEW (Graphical User friendly Interface) to aid during bad weather conditions.


2019 ◽  
Vol 889 ◽  
pp. 526-532
Author(s):  
Thai Viet Dang ◽  
Si Thong Dinh ◽  
Xuan Toi Bui

Currently, the world has a lot of research and practical application of intelligent building systems integrated with intelligent power systems. Because Vietnam is a country with potential for solar energy, the integrator of solar energy is being strongly developed. However, the research result of the optimization of electrical energy used by the intelligent type solar integration is rare. This paper presents the design and structure of the module of intelligent control and monitoring via wireless network integrated with the automatic solar concentration system. The system allows easy connection and operation of all electrical power sources including the dispersal solar power to ensure the efficient and lower power consumption. In addition, the solar cell system is applied the Maximum Power Point Tracking technique (MPPT), which helps to stabilize and improve the power generation efficiency of the PV panels. The test results on the module showed absorption performance of automatic solar-cell flat plate systems is raised by 20-30% and power consumption in small households reduced approximately 30%.


2014 ◽  
Author(s):  
Abhishek Wadhwa ◽  
Sung-Yong Park

We present optical analyses of a microfluidic tunable liquid prism to find its optimized configuration that can achieve wider beam steering as well as less reflection loss and eventually maximize solar energy capture without mechanical tracking. For this study, four different prism configurations are compared from single to quad-stacked ones with various refractive indices of the liquids filled in the prism. Its beam steering capability can be improved by increasing the refractive index ratio between the liquids used and by using higher number of the stacked prisms. The quad-stacked prism is able to steer incoming sunlight with an incident angle of a α ≤ ± 75° at an apex angle of φ ≤ ± 30°, which represents more than 5 times improvement, when it is compared to the single prism using the same liquids. For appropriate liquid material selection, the effect of refractive index ratio, r = n2/n1, on beam steering was additionally studied. However, one considerable issue is the fact that the better beam steering, the more reflection loss. This is because both higher number of interfaces and larger refractive index ratio make more reflection at each of the interfaces. Our reflectance analysis showed that the quad prism performs inferior to the double prism until α = ± 32°, while being of superior beam steering performance. To further reduce the solar energy loss through the quad prism, a modified configuration is proposed with a thin film added to the interfaces. 50 % of the total reflection was reduced. Our technology promises an alternative to a low-cost and high-efficiency solar tracking system capable of beam steering as wide as ± 75° and reflection loss as low as 4.5%, during all daily tracking of the sun.


2021 ◽  
Vol 13 (22) ◽  
pp. 12807
Author(s):  
Md Fahim Tanvir Hossain ◽  
Samer Dessouky ◽  
Ayetullah B. Biten ◽  
Arturo Montoya ◽  
Daniel Fernandez

This study aims at designing and developing a new technique to harvest solar energy from asphalt pavements. The proposed energy harvester system consists of a pavement solar box with a transparent polycarbonate sample and a thin-film solar panel. This device mechanism can store energy in a battery charged over daytime and later convert it into electric power as per demand. A wide range of polycarbonate samples containing different thicknesses, elastic moduli, and light transmission properties were tested to select the most efficient materials for the energy harvester system. Transmittance Spectroscopy was conducted to determine the percent light transmission property of the polycarbonate samples at different wavelengths in the visible spectrum. Finite Element Analysis modeling of the pavement–tire load system was conducted to design the optimal energy harvester system under static load. It was followed by the collection of data on the generated power under different weather conditions. The energy harvesters were also subjected to vehicular loads in the field. The results suggest that the proposed pavement solar box can generate an average of 23.7 watts per square meter continuously over 6 h a day under sunny conditions for the weather circumstances encountered in South Texas while providing a slightly smaller power output in other weather circumstances. It is a promising self-powered and low-cost installation technique that can be implemented at pedestrian crossings and intersections to alert distracted drivers at the time of pedestrian crossing, which is likely to improve pedestrian safety.


2020 ◽  
Author(s):  
Orlando Soares de Santana Filho ◽  
Carlos Henrique Mota Martins ◽  
Thiago Henrique Felix C. Ribeiro Conceição ◽  
Alex Vinicius dos Reis Freitas Silva ◽  
Adriano Honorato Braga ◽  
...  

Solar energy is a renewable and inexhaustible source, besidescausing damage to nature, being clean and sustainable.Transform the electromagnetic radiation emitted by the Sunelectrical energy are used solar panels. In order to improveefficiency and performance of this capture, a low-cost wasbuilt, a single-axis solar tracking system for photovoltaicpanels. The solution uses the automation Arduino UNO R3,open hardware, two photosensitive sensors LDR GL-5528, inaddition to a servo motor capable of moving the surface of aphotovoltaic plate according to the detection of the highestincidence of light. The circuit and its components wereprogrammed using the Arduino IDE software, version 1.8.11.As a result, it was possible to follow the movement of thesun, differing from a static panel, thus ensuring greater sunshineon the solar plate, as a result of this traceablecontrol prototype.


1969 ◽  
Vol 69 (1) ◽  
pp. 45-55
Author(s):  
Y. Shahabasi

Strictly speaking, all forms of energy are derived from the sun. However, our most common forms of energy, fossil-fuels, received their solar input eons ago and have changed their characteristics so that they are now in concentrated form. It is apparent that these stored concentrated energy forms are now being used at such a rapid rate that they will be depleted in the not-toodistant future. It would be useful to utilize the incoming solar energy directly. The effective use of the sun's energy in agriculture by any economically possible means will help the farmers continue their work with no disruption because of the lack of concentrated form of energy. The fluidyne heat engine utilizes solar energy to pump water. The simplicity, reliability, and low cost of this engine are of primary importance for the farmers in the part of the world whereas solar energy is abundant such as Puerto Rico.


This paper proposes a design of solar tracking system for capturing maximum amount of solar energy by rotating the solar panel. From sun rise to sun set, the sun changes its direction several times due to which the static solar panel fails to capture maximum solar energy throughout the day. Therefore, it is required to develop a system that is capable of generating electrical energy by making use of maximum amount of solar energy. This paper discloses about the rotatable solar tracking system capable of rotating along the sun direction for tracking maximum amount of solar energy. This advanced technology not only utilize the solar energy more effectively but also improves the efficiency of whole system.


1964 ◽  
Vol 86 (4) ◽  
pp. 475-484 ◽  
Author(s):  
John I. Yellott

The most spectacular successes in solar-energy utilization in 1963 have been scored by the communications satellites, all of which are powered by megacell arrays of silicon solar batteries. So many satellites are now in orbit that it has literally become impossible to keep track of them. For the second generation of spacecraft, which will venture closer to the sun and also will need more power than today’s silicon cell arrays can conveniently produce, thermionic and thermoelectric converters and high-accuracy concentrators are now in the preflight test stage. On the earth’s surface, solar water heaters and low-capacity stills are gaining commercial acceptance in regions where fossil fuels and electricity are expensive. Production of drinking water from the sea and from brackish wells is receiving substantial research support, and encouraging progress is reported for both small and large solar stills. The much-needed solar pump and refrigerator are still awaiting the breakthrough which will result in low-cost collectors capable of generating steam or other vapors at moderate pressure. These projects urgently need financial support.


Sign in / Sign up

Export Citation Format

Share Document