Multiphase CFD Analysis of a Subsea Intervention System

Author(s):  
Elham Maghsoudi ◽  
Uday Godse ◽  
Alistair Gill

In this study, a computational fluid dynamics (CFD) analysis was conducted to evaluate a new design of an intervention system. A multiphase analysis was performed to understand the mixing characteristics as the cement is pumped into the well and the degree to which the cement could be contaminated with spacer fluid. A transient multiphase analysis was conducted to examine the flow and the mixing behavior through the various sections of the intervention system. A combination of 2D and 3D CFD models was used, depending upon the geometry in each section. The results indicated that the intervention system operates efficiently without diluting the cement. Non-Newtonian methods used in CFD were validated using available theoretical and experimental data. In a large-scale yard test, good agreement was obtained for resin and water; however, cement did not show good agreement as the flow rate increased over 1 bbl/min.

2021 ◽  
Vol 2059 (1) ◽  
pp. 012003
Author(s):  
A Burmistrov ◽  
A Raykov ◽  
S Salikeev ◽  
E Kapustin

Abstract Numerical mathematical models of non-contact oil free scroll, Roots and screw vacuum pumps are developed. Modelling was carried out with the help of software CFD ANSYS-CFX and program TwinMesh for dynamic meshing. Pumping characteristics of non-contact pumps in viscous flow with the help of SST-turbulence model were calculated for varying rotors profiles, clearances, and rotating speeds. Comparison with experimental data verified adequacy of developed CFD models.


2015 ◽  
Vol 787 ◽  
pp. 280-284
Author(s):  
C. Uma Maheswari ◽  
R. Meenakshi Reddy

Concentrated solar thermal (CST) power has been used for years to help supply power to certain energy markets and has proven to be fairly successful. Unfortunately the high prices of these solar technologies have prohibited them from really making a large impact on the world's energy scene. This study analyses the structural, thermal, and CFD performance of a parabolic dish concept which could be the basis for large scale commercial concentrated solar thermal electricity. Simulation of the structural, thermal and CFDanalysis of the dish with varying metallic properties (Aluminium, Copper and StainlessSteel) under different windconditionswas compared. Computational Fluid Dynamics (CFD) was done to simulate the thermal performance of the dish at two different wind velocities.


Author(s):  
Lucas do Vale Machado ◽  
Antonio Carlos Fernandes ◽  
Gustavo César Rachid Bodstein

In this paper we present numerical and experimental work motivated by the study of a rudder profile with significant levels of lift that provides better performance for the maneuvering and stabilization of a ship. This is the so-called Schilling profile. The analysis of the two-dimensional subsonic steady flow over four profiles was carried out using computational fluid dynamics (CFD) tools with a κ-ω SST turbulence model. We consider three Schilling profiles with different thicknesses and the classical NACA 0015 profile, taken as a reference. Simulation results were compared to our experimental measurements at various angles of attack and two orders of magnitude of the Reynolds number, 5.45 × 104 and 1.09 × 105. The numerical results show general good agreement with experimental data and highlight the distinct behavior of Schilling profile.


2021 ◽  
Vol 9 (2) ◽  
pp. 202
Author(s):  
Soonseok Song ◽  
Yigit Kemal Demirel ◽  
Claire De Marco Muscat-Fenech ◽  
Tonio Sant ◽  
Diego Villa ◽  
...  

Research into the effects of hull roughness on ship resistance and propulsion is well established, however, the effect of heterogeneous hull roughness is not yet fully understood. In this study, Computational Fluid Dynamics (CFD) simulations were conducted to investigate the effect of heterogeneous hull roughness on ship resistance. The Wigley hull was modelled with various hull conditions, including homogeneous and heterogeneous hull conditions. The results were compared against existing experimental data and showed a good agreement, suggesting that the CFD approach is valid for predicting the effect of heterogeneous hull roughness on ship resistance. Furthermore, the local distributions of the wall shear stress and roughness Reynolds number on the hull surface were examined to assess the flow characteristics over the heterogeneous hull roughness.


Author(s):  
Jaroslaw Jelen ◽  
Wojciech Studzinski ◽  
Michael Brown

Designers of ultrasonic meter stations with headers do not have any experimental data which can help to determine proper location of the multipath ultrasonic meter within the meter run. The results of meter tests are limited to such configurations as a single 90° elbows and two elbows out of plane. Because of the variety of header layouts used in practice any experimental information related to this piping configuration will be of limited use in the design process. The proposed approach is based on the application of Computational Fluid Dynamics (CFD) methods to the evaluation of header effects on ultrasonic flow meter using a commercial CFD code combined with a numerical model of the ultrasonic meter. The numerical simulation of the flow field in the header and meter runs and subsequent integration of the obtained velocity field in a numerical model of multipath ultrasonic meter were used to determine the optimal meter position. This approach was validated against available experimental data on the ultrasonic meter performance downstream of single and double elbow. The comparison of simulations and test data has shown very good agreement of trends exhibited by the meter. The trends were replicated by the simulator within approximately 1% for X/D ≥5 and within 0.5% for X/D ≥9.


1993 ◽  
Vol 115 (2) ◽  
pp. 194-195 ◽  
Author(s):  
Ismail Celik

Computational fluid dynamics (CFD) has established itself as a viable technique for performing research and solving engineering problems, and when used correctly, can give accurate results for many fairly complex problems. This success has led to an ever increasing number of journal publications, many code developers, and surprisingly many users in the industry. Commercial CFD packages are often marketed by claiming that a particular code can solve almost every fluid flow problem, while many users, both in industry and academia, stand aloof from quantitative error measures, instead being dazzled by colorful computer generated output. This is mostly due to insufficient education in the scientific computing discipline which often leads (intentional or not) to misuse and wrong conclusions. Every year, hundreds of papers are published in conference proceedings, and journals, on the advancement and application of CFD techniques. Whenever something is spawned in such large quantities it is very easy to lose sense of quality control. To assert quality, papers often end with a conclusion such as “good agreement is found between experiments and predictions” to which the readers have become so immune that it no longer has meaning. Unfortunately, very little information is provided about the numerical uncertainty and the experimental data are often treated as if they are 100 percent accurate.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Matthew J. Hill ◽  
Robert F. Kunz ◽  
Richard B. Medvitz ◽  
Robert F. Handschuh ◽  
Lyle N. Long ◽  
...  

A computational fluid dynamics (CFD) method has been applied to gear configurations with and without shrouding. The goals of this work have been to validate the numerical and modeling approaches used for these applications and to develop physical understanding of the aerodynamics of gear windage loss. Several spur gear geometries are considered, for which experimental data are available. Various canonical shrouding configurations and free spinning (no shroud) cases are studied. Comparisons are made with experimental data from open literature, and data recently obtained in the NASA Glenn Research Center Gear Windage Test Facility, Cleveland, OH. The results show good agreement with the experiment. The parametric shroud configuration studies carried out in the Glenn experiments and the CFD analyses elucidate the physical mechanisms of windage losses as well as mitigation strategies due to shrouding and newly proposed tooth contour modifications.


Author(s):  
Jeff Gibson ◽  
Michael Reader-Harris

Computational Fluid Dynamics (CFD) was used to compute the effect of two bends in perpendicular planes on the performance of 4-inch Venturi tubes with β = 0.4, 0.6 and 0.75 for water at a Reynolds number of 350,000 and at various distances from the bend. Two types of Venturi tubes were analysed, the first having a standard convergent angle of 21°, the second having a non-standard convergent angle of 10.5°. Good agreement with experiment was obtained. Swirling axisymmetric flows were computed to help interpret experimental data.


2016 ◽  
Vol 7 (5) ◽  
pp. 571-576
Author(s):  
Vadim Nikitin ◽  
Paulius Bogdevičius ◽  
Marijonas Bogdevičius

The main goal of this paper is to present a summarized overview of the methods used for Ranque–Hilsch vortex tube numerical analysis using computational fluid dynamics (CFD). The overview is mainly focused on the most recently conducted studies that are both backed by experimental data and is evaluated by the authors as being in good agreement with experimental results. Generalized tendencies in computational vortex tube analysis are presented while focusing on researchers’ approach towards the geometric model used for the study and the governing equations. A brief introduction to the subject matter is presented followed by a short retrospective of the previous studies and related challenges. The conclusions are formed based on the most recent, as well as previously analysed, published research results. Užpildų šarminė korozija betone vyksta reaguojant cemente esantiems natrio ir kalio hidroksidams (šarmams) su aktyviu SiO2, esančiu kai kuriuose užpilduose. Vykstant šiai reakcijai betone susidaro didelių vidinių įtempių, kurie sukelia betono deformacijas, pleišėjimą ir suirimą. Reakcija vyksta lėtai, betono irimo požymių atsiranda tik po kelių mėnesių ar metų. Tyrimams buvo naudojami dviejų skirtingų karjerų užpildai. Atlikus tyrimus nustatyta, kad Lietuvos žvyro karjerai užteršti reaktyviomis dalelėmis, turinčiomis amorfinio silicio dioksido, reaguojančio su cemente esančiais natrio ir kalio šarmais, ir sukeliančiomis betono šarminę koroziją. Nustatyta, kad pagal AAR 2 stambieji užpildai priskiriami II grupei – galimai reaktyviems užpildams, nes jų plėtra po 14 parų viršija 0,1 %.


Author(s):  
Jaehun Lee ◽  
Kyoung Jin Jung

The procedure to determine manufacturing tolerances for the laminar airfoil is explained using the CFD (computational fluid dynamics) analysis. This procedure is applied to a laminar airfoil for the tolerance of the forward-facing step and rearward-facing step. In the CFD analysis the Langtry-Menter SST Transition model is used to simulate a natural transition over the laminar airfoil. The computed tolerances showed good agreement with experimental data.


Sign in / Sign up

Export Citation Format

Share Document