Design and Analysis of Internal Gears With Different Rim Thickness and Shapes

Author(s):  
F. Karpat ◽  
S. Ekwaro-Osire ◽  
T. G. Yilmaz ◽  
O. Dogan ◽  
C. Yuce

In recent years, thanks to their significant advantages such as compactness, large torque-to-weight ratio, large transmission ratios, reduced noise and vibrations, internal gears have been used in automotive and aerospace applications especially in planetary gear drives. Although internal gears have a number of advantages, they have not been studied sufficiently. Internal gears are manufactured by pinion type cutters which are nearly identical with pinion gear except the addendum factor which is 1.25 instead of 1. The tip geometry of a pinion type cutter which determines the fillet of internal gear tooth can be sharp or rounded. In this study, the design of internal gears were investigated by using a traditional approach. Mathematical equations of pinion type cutter were obtained by using differential geometry, then the equations of internal gear tooth were derived accurately by using coordinate transformations and relative motion between the pinion type cutter and internal gear blank. A computer program was generated to attain points of internal gear teeth and three dimensional design of complete gear. 20°-20° were used as pressure angle. To find optimum internal gear geometry, different rim thicknesses and shapes are tried out for finite element analyses. There were several parameters that were shown to effect the performance of the internal gears, with tooth stiffness being the most significant parameter. Tooth stiffness was also vitally influence the dynamic analysis. In order to compute gear tooth stiffness of the internal gear with various rim thicknesses and shapes, finite element analysis was used. A static analysis was performed to assess the gear bending stress and tooth displacement. Tetrahedral element type was selected for meshing. The internal gear outer ring was fixed and the force of 2500 N was applied on the tooth. According to the displacement values from the analysis internal gear tooth stiffness were calculated individually. Additionally, the effect of root bending stress with varying rim thickness, shapes, and root radius were investigated. The bending stresses were calculated according to ISO 6336 and using finite element analysis were shown to be in good agreement. It was shown that when the rim thickness and fillet radius were increased, the maximum bending stresses decreased considerably. As rim thickness was increased, the maximum bending stress decreased nearly 23%. It was also shown that as the fillet radius decreased, the maximum bending stress increased, whereas the rim stresses slightly changed. As the fillet radius was decreased, the maximum bending stress increased nearly 10%. It was also observed that when rim thickness was increased, the stress on the rim was decreased, whereas tooth stiffness was increased. However, fillet radius had no visible effect both on rim stress and tooth stiffness. Furthermore, it was shown that the rim shape had significant effect on rim stress.

1994 ◽  
Vol 116 (4) ◽  
pp. 1157-1162 ◽  
Author(s):  
G. D. Bibel ◽  
S. K. Reddy ◽  
M. Savage ◽  
R. F. Handschuh

Thin rim gears find application in high-power, lightweight aircraft transmissions. Bending stresses in thin rim spur gear tooth fillets and root areas differ from the stresses in solid gears due to rim deformations. Rim thickness is a significant design parameter for these gears. To study this parameter, a finite element analysis was conducted on a segment of a thin rim gear. The rim thickness was varied and the location and magnitude of the maximum bending stresses reported. Design limits are discussed and compared with the results of other researchers.


Author(s):  
Zihni B Saribay

The conjugate meshing face-gear pairs are implemented to high shaft angle intersecting axis gears such as the pericyclic transmission system. The meshing face-gear pair tooth surfaces are generated with a mutually conjugate spur shaper. The established tooth geometry and the dimensions of the conjugate face-gear pairs are summarized in this article. Four different example face-gear pairs are generated at various shaft angles and numbers of tooth combinations. Tooth bending stresses of these face-gear pair teeth are investigated based on finite element analysis methods. In these analyses, only single pairs of teeth are investigated. These results are compared to analog the spur gear tooth bending stresses calculated by finite element analysis and standard spur gear stress formulas. Meshing face-gear pair single tooth bending stress levels show approximately 3% to 6% difference from same size spur gear tooth.


Author(s):  
Timothy J Lisle ◽  
Brian A Shaw ◽  
Robert C Frazer

The Association of German Engineers VDI 2737:2005 and the International Organisation for Standardisation ISO 6336:2006 are universally accepted analytical procedures for the analysis of internal gears. There is no official American Gear Manufacturers Association standard for internal gear stress analysis due to the validity of inscribing the Lewis parabola within internal concave profiles and the resulting errors associated with the location of maximum root bending stress. This research investigates the differences associated with using ISO 6336, VDI 2737 and an unofficial American Gear Manufacturers Association method, all of which are compared against a potentially more accurate numerical (ANSYS) method and strain gauge techniques.


Author(s):  
Benny Thomas ◽  
K Sankaranarayanasamy ◽  
S Ramachandra ◽  
SP Suresh Kumar

Various analytical methods have been developed by designers to predict gear tooth bending stress in asymmetric spur gears with an intention to improve the accuracy of predicted results and to reduce the need for time consuming finite element analysis at the early stages of gear design. Asymmetry in the drive and coast side of asymmetric spur gears poses difficulty in direct application of well-known procedures like American Gear Manufacturers Association and International Organization for Standardization in the prediction of gear tooth bending stress. In earlier works, ISO-6336-3 methodology was suitably modified and adapted to predict asymmetric spur gear tooth bending stress. This approach is based on certain assumptions on the location of critical section which could introduce error in the predicted maximum bending stress. The present work is to analytically predict gear tooth bending stress in normal contact ratio asymmetric spur gears based on a more rigorous analytical approach. This includes a fundamental study on the gear tooth orientation used to define the coordinate system, determination of maximum bending stress by search along the fillet profile and to obtain stress profile along the fillet. Gear tooth bending stress obtained from the present work using Search method is compared against the results obtained from earlier adapted International Organization for Standardization method and Finite Element Analysis. This study recommends a new coordinate system and method for analytical prediction of gear tooth bending stress in normal contact ratio asymmetric spur gears.


2012 ◽  
Vol 490-495 ◽  
pp. 2546-2549
Author(s):  
De Li Cui ◽  
Yi Tong Li ◽  
Hong Zhuang Zhang

The meshing generating spur bevel gear is presented by the method for precise modeling of gear in software Catia. Then by the excellent data exchange interface between Catia and ANSYS, the model can be transferred into ANSYS and bending stress of the gear tooth is calculated with finite element method ( FEM),which proposed design theory basis of generating spur bevel gear.


2013 ◽  
Vol 764 ◽  
pp. 129-133
Author(s):  
Yan Gang Wei ◽  
Chun Xiao Gu ◽  
Xiu Juan Zhang

According to the transmission characteristics of the internal gear pair with few teeth difference, the models of finite element analysis are established reasonably after combining the principle of gear engagement, contact mechanics, and finite element concept and method. The relationship between the simulation model of finite element and the meshing process is made clearly. The simulation analysis is performed subtly for the meshing process of the internal gear pair using the finite element analysis method. The main factors of multi-pair teeth meshing effect have been shown and the effect of multi-pair teeth meshing on the gear bending stress is analyzed.


2021 ◽  
Author(s):  
Oguz DOGAN ◽  
Celalettin YUCE ◽  
Fatih KARPAT

Abstract Today, gear designs with asymmetric tooth profiles offer essential solutions in reducing tooth root stresses of gears. Although numerical, analytical, and experimental studies are carried out to calculate the bending stresses in gears with asymmetric tooth profiles a standard or a simplified equation or empirical statement has not been encountered in the literature. In this study, a novel bending stress calculation procedure for gears with asymmetric tooth profiles is developed using both the DIN3990 standard and the finite element method. The bending stresses of gears with symmetrical profile were determined by the developed finite element model and was verified by comparing the results with the DIN 3990 standard. Using the verified finite element model, by changing the drive side pressure angle between 20° and 30° and the number of teeth between 18 and 100, 66 different cases were examined and the bending stresses in gears with asymmetric profile were determined. As a result of the analysis, a new asymmetric factor was derived. By adding the obtained asymmetric factor to the DIN 3390 formula, a new equation has been derived to be used in tooth bending stresses of gears with asymmetric profile. Thanks to this equation, designers will be able to calculate tooth bending stresses with high precision in gears with asymmetric tooth profile without the need for finite element analysis.


Author(s):  
Saurabh Srivastava ◽  
Sachin Salunkhe ◽  
Sarang Pande ◽  
Bhavin Kapadiya

Steering knuckle connects steering system, suspension system and braking system to the chassis. The steering knuckle contributes a significant weight to the total weight of a vehicle. Increasing the efficiency of an automobile without compromising the performances is the major challenge faced by the manufacturers. This paper presents an effective topology optimization of steering knuckle used in a vehicle with the primary objective of minimizing weight. The study on optimization of knuckle is divided into two phases, the first phase involves making of a computer-aided design model of the original steering knuckle and carry out finite element analysis on the knuckle by estimating the loads, which are acting on the component. In the second phase, design optimization of the model of steering knuckle is carried out, and excess material is removed at the region where induced stress is negligible as obtained in finite element analysis assuming standard boundary and loading conditions. The paper describes a research work carried out to optimize structural topology giving the essential details. The methodology may be applied to optimize structural components used in applications where the ratio of desired properties to the cost, generally in terms of weight, is to be optimized. In the case of automobiles, strength to weight ratio has to be maximized. New researchers working in the area will have an understanding of the procedures, and further, the techniques may be applied to design in general.


2011 ◽  
Vol 87 ◽  
pp. 106-112 ◽  
Author(s):  
Amiri Asfarjani Alireza ◽  
Adibnazari Sayid ◽  
Reza Kashyzadeh Kazem

Fibrous composites are finding more and more applications in aerospace, automotive, and naval industries. They have high stiffness and strength to weight ratio and good rating in regards to life time fatigue. Investigating mechanical behavior under dynamic loads to replace this material is very important. In the present article, investigate Fatigue of Unidirectional Fibrous Composites by using finite element analysis. So, to achieve this purpose Firstly, modeling fiber and matrix in separate case and simulated semi actual conditions, attained S-N curve of fiber and matrix and after that by using micromechanical model of combination fiber and matrix can approach S-N curve of Unidirectional Fibrous Composites. Finally, Comparisons of the finite element analysis of Ansys and the experimental predictions indicate based on three point bending fatigue testing that the results are satisfactorily in good agreement with each other which approves the power law assumption in the model.


2020 ◽  
Vol 14 (5-6) ◽  
pp. 555-567
Author(s):  
Michael Weigelt ◽  
Cornelius Thoma ◽  
Erdong Zheng ◽  
Joerg Franke

AbstractNumerous applications of daily life use flat coils, e.g. in the automotive area, in solar technology and in modern kitchens. One common property that all these applications share, is a flat coil made of high-frequency (HF) litz wires. The coil layout and the properties of the HF litz wire influence the winding process and the efficiency of the application. As a result, the HF litz wire must meet the complex technical requirements of the winding process and of the preferred mechanical, electromagnetic and thermal properties of the HF litz wire itself. Therefore, a reasonable configuration and optimization of HF litz wire has been developed with the help of a finite-element-analysis (FEA). In this work, it is first shown that the mechanical behavior of HF litz wire under tensile and bending stress can be simulated. Since the computational effort for modelling an HF litz wire at the single conductor level is hardly manageable, a suitable modelling strategy is developed and applied using geometric analogous models (GAM). By using such a model, HF litz wires can be designed for the specific application and their behavior in a winding process can be predicted.


Sign in / Sign up

Export Citation Format

Share Document