Design and Development of Virtual Reality Environments for Biomedical and Engineering Applications

Author(s):  
Eder Govea ◽  
Hugo I. Medellín-Castillo

Virtual Reality (VR) is one of the areas of knowledge that have taken advantage of the computer technological development and scientific visualization. It has been used in different applications such as engineering, medicine, education, entertainment, astronomy, archaeology and arts. A main issue of VR and computer assisted applications is the design and development of the virtual environment, which comprises the virtual objects. Thus, the process of designing virtual environment requires the modelling of the virtual scene and virtual objects, including their geometry and surface characteristics such as colours, textures, etc. This research work presents a new methodology to develop low-cost and high quality virtual environments and scenarios for biomechanics, biomedical and engineering applications. The proposed methodology is based on open-source software. Four case studies corresponding to two applications in medicine and two applications in engineering are presented. The results show that the virtual environments developed for these applications are realistic and similar to the real environments. When comparing these virtual reality scenarios with pictures of the actual devices, it can be observed that the appearance of the virtual scenarios is very good. In particular the use of textures greatly helps in assessing specific features such as simulation of bone or metal. Thus, the usability of the proposed methodology for developing virtual reality applications in biomedical and engineering is proved. It is important to mention that the quality of the virtual environment will also depend on the 3D modelling skills of the VR designer.

Author(s):  
Hugo I. Medellín-Castillo ◽  
Germánico González-Badillo ◽  
Eder Govea ◽  
Raquel Espinosa-Castañeda ◽  
Enrique Gallegos

The technological growth in the last years have conducted to the development of virtual reality (VR) systems able to immerse the user into a three-dimensional (3D) virtual environment where the user can interact in real time with virtual objects. This interaction is mainly based on visualizing the virtual environment and objects. However, with the recent beginning of haptic systems, the interaction with the virtual world has been extended to also feel, touch and manipulate virtual objects. Virtual reality has been successfully used in the development of applications in different scientific areas ranging from basic sciences, social science, education and entertainment. On the other hand, the use of haptics has increased in the last decade in domains from sciences and engineering to art and entertainment. Despite many developments, there is still relatively little knowledge about the confluence of software, enabling hardware, visual and haptic representations, to enable the conditions that best provide for an immersive sensory environment to convey information about a particular subject domain. In this paper, the state of the art of the research work regarding virtual reality and haptic technologies carried out by the authors in the last years is presented. The aim is to evidence the potential use of these technologies to develop usable systems for analysis and simulation in different areas of knowledge. The development of three different systems in the areas of engineering, medicine and art is presented. In the area of engineering, a system for the planning, evaluation and training of assembly and manufacturing tasks has been developed. The system, named as HAMS (Haptic Assembly and Manufacturing System), is able to simulate assembly tasks of complex components with force feedback provided by the haptic device. On the other hand, in the area of medicine, a surgical simulator for planning and training orthognathic surgeries has been developed. The system, named as VOSS (Virtual Osteotomy Simulator System), allows the realization of virtual osteotomies with force feedback. Finally, in the area of art, an interactive cinema system for blind people has been developed. The system is able to play a 3D virtual movie for the blind user to listen to and touch by means of the haptic device. The development of these applications and the results obtained from these developments are presented and discussed in this paper.


Author(s):  
Randall Spain ◽  
Benjamin Goldberg ◽  
Jeffrey Hansberger ◽  
Tami Griffith ◽  
Jeremy Flynn ◽  
...  

Recent advances in technology have made virtual environments, virtual reality, augmented reality, and simulations more affordable and accessible to researchers, companies, and the general public, which has led to many novel use cases and applications. A key objective of human factors research and practice is determining how these technology-rich applications can be designed and applied to improve human performance across a variety of contexts. This session will demonstrate some of the distinct and diverse uses of virtual environments and mixed reality environments in an alternative format. The session will begin with each demonstrator providing a brief overview of their virtual environment (VE) and a description of how it has been used to address a particular problem or research need. Following the description portion of the session, each VE will be set-up at a demonstration station in the room, and session attendees will be encouraged to directly interact with the virtual environment and ask demonstrators questions about their research and inquire about the effectiveness of using VE for research, training, and evaluation purposes. The overall objective of this alternative session is to increase the awareness of how human factors professionals use VE technologies and increase the awareness of the capabilities and limitations of VE in supporting the work of HF professionals.


2019 ◽  
Vol 01 (01) ◽  
pp. 24-34 ◽  
Author(s):  
Smys S ◽  
Jennifer S. Raj ◽  
Krishna raj N.

Virtual reality (VR) technology has the potential to make a person experience anything, anytime, anywhere. It has the ability to influence the human brain that it assumes to be present somewhere that it is really not. In this paper, we exploit this application of the VR technology to simulate virtual environments that can help with PTSD therapy for people affected by trauma due to accident, war, sexual abuse and so on. Several sensors are used to gather the user movements on a motion platform and replicate it in the virtual environment with the help of a Raspberry Pi board and Unreal Developer’s kit. It has flexible interfaces that the clinician can modify the virtual environment according to the requirement for the patient.


2018 ◽  
Vol 18 (2) ◽  
pp. 30-57
Author(s):  
Shamima Yasmin

This paper conducts an extensive survey on existing Virtual Reality (VR)-based rehabilitation approaches in the context of different types of impairments: mobility, cognitive, and visual. Some VR-based assistive technologies involve repetitions of body movements, some require persistent mental exercise, while some work as sensory substitution systems. A multi-modal VR-based environment can incorporate a number of senses, (i.e., visual, auditory, or haptic) into the system and can be an immense source of motivation and engagement in comparison with traditional rehabilitation therapy. This survey categorizes virtual environments on the basis of different available modalities. Each category is again subcategorized by the types of impairments while introducing available devices and interfaces. Before concluding the survey, the paper also briefly focuses on some issues with existing VR-based approaches that need to be optimized to exploit the utmost benefit of virtual environment-based rehabilitation systems .


Author(s):  
Miguel A. Garcia-Ruiz ◽  
Arthur Edwards ◽  
Raul Aquino-Santos ◽  
Jay Shiro Tashiro ◽  
Bill Kapralos

This chapter investigates whether an educational virtual environment can be developed to practice listening comprehension skills that meets second language student needs, complies with usability criteria, and is motivating to use. The chapter also investigates whether the usability of virtual reality(VR) technology positively affects language learning listening comprehension. It provides background research and information in Computer Assisted Language Learning (CALL), VR, and second language methodology. It then presents a technical and qualitative description of Realtown, a virtual environment designed to promote listening comprehension. This chapter also describes a usability study of Realtown. Student errors, motivation, and ease of use, among other features, were positively measured on listening comprehension activities in Realtown. Future work includes longitudinal studies on learning issues, first-person, and collaborative experiences in VR, including the impact of VR on learning and knowledge transfer when combined with traditional instruction.


2010 ◽  
pp. 180-193 ◽  
Author(s):  
F. Steinicke ◽  
G. Bruder ◽  
J. Jerald ◽  
H. Frenz

In recent years virtual environments (VEs) have become more and more popular and widespread due to the requirements of numerous application areas in particular in the 3D city visualization domain. Virtual reality (VR) systems, which make use of tracking technologies and stereoscopic projections of three-dimensional synthetic worlds, support better exploration of complex datasets. However, due to the limited interaction space usually provided by the range of the tracking sensors, users can explore only a portion of the virtual environment (VE). Redirected walking allows users to walk through large-scale immersive virtual environments (IVEs) such as virtual city models, while physically remaining in a reasonably small workspace by intentionally injecting scene motion into the IVE. With redirected walking users are guided on physical paths that may differ from the paths they perceive in the virtual world. The authors have conducted experiments in order to quantify how much humans can unknowingly be redirected. In this chapter they present the results of this study and the implications for virtual locomotion user interfaces that allow users to view arbitrary real world locations, before the users actually travel there in a natural environment.


Author(s):  
Casper G. Wickman ◽  
Rikard So¨derberg

In the automotive industry today, virtual geometry verification activities are conducted with nominal models in the early design phases. Later in the design process when the first physical test series are made, are concepts verified in a non-nominal manner. Errors detected at this stage can result in expensive post-conceptual changes. By combining Computer Aided Tolerance (CAT) simulation tools with Virtual Reality (VR) tools, virtual environments for non-nominal geometry verification can be utilized. This paper presents the results from a study, conducted at Volvo Cars, that investigates the perceptional aspects that are related to verification of quality appearance, using non-nominal virtual models. Although a realistic non-nominal model is created, the interpretation, i.e. how the model is perceived, must be clarified. This would represent a validation of the model from a perceptional point of view. Since the effect of geometric variation is a specific application, with high demands on realistic and detailed representation, perceptional studies are needed to ensure that VR and other virtual representations can be used for this kind of application. The question is whether it is possible to evaluate aspects like flush, gap and see-through in virtual environments. In this paper, two environments are compared, one physical and one corresponding virtual environment. Three adjusted physical vehicles are mapped to the virtual environment and compared using non-immersive desktop VR in a visualization clinic with test subjects from the automotive industry. The study indicates that virtual objects are judged as less good looking compared with physical objects. There is also a higher degree of uncertainness when judging virtual objects.


2005 ◽  
Vol 32 (5) ◽  
pp. 777-785 ◽  
Author(s):  
Ebru Cubukcu ◽  
Jack L Nasar

Discrepanices between perceived and actual distance may affect people's spatial behavior. In a previous study Nasar, using self report of behavior, found that segmentation (measured through the number of buildings) along the route affected choice of parking garage and path from the parking garage to a destination. We recreated that same environment in a three-dimensional virtual environment and conducted a test to see whether the same factors emerged under these more controlled conditions and to see whether spatial behavior in the virtual environment accurately reflected behavior in the real environment. The results confirmed similar patterns of response in the virtual and real environments. This supports the use of virtual reality as a tool for predicting behavior in the real world and confirms increases in segmentation as related to increases in perceived distance.


Sign in / Sign up

Export Citation Format

Share Document