Investigation of the Relation Between Tube Spacing and Tube Sheet Deformation in Heat Exchangers due to the Mechanical Rolling Process: A Numerical Study

Author(s):  
Søren Bøgelund Madsen ◽  
Claus Hessler Ibsen ◽  
Bo Gervang ◽  
Anders Schmidt Kristensen

The focus of this paper is a numerical investigation of tubesheet deformation in tube-tubesheet joints used in tube bank heat exchangers. To increase the thermal performance of a cooler the tubes can be moved closer together to increase turbulence and the heat transfer coefficient. Reducing the tube spacing is an alternative to using finned tubes to increase thermal performance. Finned tubes is more susceptible to fouling and therefore the small tube spacing can be an attractive alternative in some cases. From a manufacturing point of view, there are some problems with small tube spacing. When the tube spacing is reduced the deformation of the tube sheet increases. The relation between the tube spacing and tubesheet deformation is of great interest to the thermal designers of heat exchangers since it sets a limit for the tube spacing. The limit depends on how much tube sheet deformation is acceptable in the design. In most cases, the tubes are joined to the tube sheet by an expansive cold forming process. The expansion process that is investigated in this paper is the mechanical rolling expansion process. The tube is plastically deformed by a series of hardened steel rollers that roll across the inner tube surface while being pushed outwards. This results in a residual contact pressure between the tube and tube sheet after relaxation/springback. The expansion process is modeled using finite elements, the model used is a 2D plane-strain model that is capable of capturing the effect of adjacent holes. This approach is new compared to previous research done in the field of mechanical roll expansion where the most commonly used model is an axisymmetric model. It is however not possible to investigate tube sheet deformation versus tube spacing with the axisymmetric model since it doesn’t include the effect of adjacent holes. The material used in the analysis is a typical stainless steel, the material is modeled using a bilinear isotropic hardening model. At some point, the deformation of the tube sheet will exponentially increase with reduced tube spacing. This effect can only be investigated using numerical tools. Too much tube sheet deformation is not desirable since it will cause the tube sheet to permanently change shape and in some cases, adjacent tube-tubesheet joints will be compromised due to the nearby expansion. The results of this paper is the relation between the tube spacing and the amount of tubesheet deformation for a given amount of apparent tube wall reduction. This relation is used to set up limits for the amount of expansion and the minimum tube spacing for the given material combination.

2019 ◽  
Vol 7 (1) ◽  
pp. 43-53
Author(s):  
Abbas Jassem Jubear ◽  
Ali Hameed Abd

The heat sink with vertically rectangular interrupted fins was investigated numerically in a natural convection field, with steady-state heat transfer. A numerical study has been conducted using ANSYS Fluent software (R16.1) in order to develop a 3-D numerical model.  The dimensions of the fins are (305 mm length, 100 mm width, 17 mm height, and 9.5 mm space between fins. The number of fins used on the surface is eight. In this study, the heat input was used as follows: 20, 40, 60, 80, 100, and 120 watts. This study focused on interrupted rectangular fins with a different arrangement and angle of the fins. Results show that the addition of interruption in fins in various arrangements will improve the thermal performance of the heat sink, and through the results, a better interruption rate as an equation can be obtained.


Author(s):  
Michael Maurer ◽  
Jens von Wolfersdorf ◽  
Michael Gritsch

An experimental and numerical study was conducted to determine the thermal performance of V-shaped ribs in a rectangular channel with an aspect ratio of 2:1. Local heat transfer coefficients were measured using the steady state thermochromic liquid crystal technique. Periodic pressure losses were obtained with pressure taps along the smooth channel sidewall. Reynolds numbers from 95,000 to 500,000 were investigated with V-shaped ribs located on one side or on both sides of the test channel. The rib height-to-hydraulic diameter ratios (e/Dh) were 0.0625 and 0.02, and the rib pitch-to-height ratio (P/e) was 10. In addition, all test cases were investigated numerically. The commercial software FLUENT™ was used with a two-layer k-ε turbulence model. Numerically and experimentally obtained data were compared. It was determined that the heat transfer enhancement based on the heat transfer of a smooth wall levels off for Reynolds numbers over 200,000. The introduction of a second ribbed sidewall slightly increased the heat transfer enhancement whereas the pressure penalty was approximately doubled. Diminishing the rib height at high Reynolds numbers had the disadvantage of a slightly decreased heat transfer enhancement, but benefits in a significantly reduced pressure loss. At high Reynolds numbers small-scale ribs in a one-sided ribbed channel were shown to have the best thermal performance.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 574
Author(s):  
Ana Vafadar ◽  
Ferdinando Guzzomi ◽  
Kevin Hayward

Air heat exchangers (HXs) are applicable in many industrial sectors because they offer a simple, reliable, and cost-effective cooling system. Additive manufacturing (AM) systems have significant potential in the construction of high-efficiency, lightweight HXs; however, HXs still mainly rely on conventional manufacturing (CM) systems such as milling, and brazing. This is due to the fact that little is known regarding the effects of AM on the performance of AM fabricated HXs. In this research, three air HXs comprising of a single fin fabricated from stainless steel 316 L using AM and CM methods—i.e., the HXs were fabricated by both direct metal printing and milling. To evaluate the fabricated HXs, microstructure images of the HXs were investigated, and the surface roughness of the samples was measured. Furthermore, an experimental test rig was designed and manufactured to conduct the experimental studies, and the thermal performance was investigated using four characteristics: heat transfer coefficient, Nusselt number, thermal fluid dynamic performance, and friction factor. The results showed that the manufacturing method has a considerable effect on the HX thermal performance. Furthermore, the surface roughness and distribution, and quantity of internal voids, which might be created during and after the printing process, affect the performance of HXs.


2021 ◽  
pp. 1-1
Author(s):  
Raphael Zanella ◽  
Caroline Nore ◽  
Xavier Mininger ◽  
Frederic Bouillault ◽  
Jean-Luc Guermond

Sign in / Sign up

Export Citation Format

Share Document