Investigation and Thermal Analysis of Friction Stir Welding Process Parameters of AA6061 Plates

Author(s):  
Jalay Shukla ◽  
Raghu Echempati ◽  
Rupal Vyasa ◽  
Vishvesh Badheka

Friction stir welding (FSW) is a solid state welding process in which a non-consumable rotating tool with a specially designed pin and shoulder is inserted into the abutting edges of sheets or plates to be joined and subsequently traversed along the joint line. In FSW, a pin tool with different shapes spins against the edges of two metal pieces of same or different thickness positioned next to each other. As the pin travels along, it creates friction that generates heat, mixes, and joins the alloys without melting them. To optimize the process, several researchers created pins of different shape, and geometry, and used them in FSW but varied the depth, rotational speed, and tilt angle of the pins. Statistical analysis has been used to identify the most optimum combination of tool and weld parameters that could support high-speed production. Many studies support that the faster FSW is carried out, the stronger (better weld quality) the resulting welds will be. The objective of this paper is to predict the effects of some of the process parameters on the performance of the aluminum alloy components joined using ANSYS simulation tool. Although not reported in this paper, the mechanical and metallurgical properties of the welded members have been measured in the laboratory. The goal is to gain an understanding of how FSW can be used to successfully join aluminum alloys and to study the effect of the various process parameters on the process. The material used is AA6061 as it is one of the popular choices for automotive applications. Experiments have been conducted to validate some of the simulation results from ANSYS software.

2016 ◽  
Vol 852 ◽  
pp. 267-272
Author(s):  
M. Selvaraj ◽  
D. Ananthapadmanaban ◽  
M. Nalla Mohamed

This paper discusses the effect of weld parameters on peak temperature during the friction stir welding process. The weld parameters such as rotational speed and welding speed are considered for this analysis. Friction stir welding trails were conducted on 6 mm AA6061-T6 plates for different combination of process parameters using Taguchi orthogonal array. Thermocouples were inserted into the plates at different distances from weld center line and temperatures were measured during friction stir welding at regular intervals. Using the Taguchi method, Peak temperature is calculated for untried combinations of process parameters. Graphs depicting the effect of different weld parameters on the peak temperature were presented and analyzed.


2018 ◽  
Vol 178 ◽  
pp. 03003 ◽  
Author(s):  
Ana Bosneag ◽  
Marius Adrian Constantin ◽  
Eduard Niţu ◽  
Monica Iordache

Friction Stir Welding, abbreviated FSW is a new and innovative welding process. This welding process is increasingly required, more than traditional arc welding, in industrial environment such us: aeronautics, shipbuilding, aerospace, automotive, railways, general fabrication, nuclear, military, robotics and computers. FSW, more than traditional arc welding, have a lot of advantages, such us the following: it uses a non-consumable tool, realise the welding process without melting the workpiece material, can be realised in all positions (no weld pool), results of good mechanical properties, can use dissimilar materials and have a low environmental impact. This paper presents the results of experimental investigation of friction stir welding joints to three dissimilar aluminium alloy AA2024, AA6061 and AA7075. For experimenting the value of the input process parameters, the rotation speed and advancing speed were kept the same and the position of plates was variable. The exit date recorded in the time of process and after this, will be compared between them and the influence of position of plate will be identified on the welding seams properties and the best position of plates for this process parameters and materials.


2019 ◽  
Vol 969 ◽  
pp. 828-833 ◽  
Author(s):  
R. Nandhini ◽  
R. Dinesh Kumar ◽  
S. Muthukumaran ◽  
S. Kumaran

The friction stir welding of polyamide 66 with a specially modified tool is studied. A variation of the conventional friction stir welding is investigated by incorporating a friction plate for the purpose of heating the polymer in the course of welding process through the tool shoulder. This in turn, improves the efficiency of the weld. The association of the welding process parameters and the weld performance has been investigated by the grey relational analysis with multi response characteristics like weld tensile strength, percent elongation and hardness. Macrostructure of the weld joint cross section has been explored by Stereo microscope. The maximum weld tensile strength of 63 MPa and a Shore hardness of 60 D at the weld nugget are obtained. The hardness profiles of the welded samples have been analyzed in this investigation.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Kuan-Jen Chen ◽  
Fei-Yi Hung ◽  
Truan-Sheng Lui ◽  
Yong-Ren Shih

The friction stir welding process (friction stir welding/processing, FSW/FSP) has wear problems related to stirring tools. In this study, the plasma transfer arc (PTA) method was used with stellite 1 powders (Co-based) to coat on the head of a SKD61 stirring tool (SKD61-ST1) in order to investigate the wear performance and phase transformation of SKD61-ST1 after FSW. Under the same experimental parameters, the wear data were compared with the high-speed steel SKH51 (tempering material SKH51-T and annealed material SKH51-A) and tungsten-carbide cobalt (TCC). Results showed the PTA coating was a γ-Co solidification matrix with M7C3 and M23C6 carbides. After FSW, the wear resistance of SKD61-ST1 was better than that of SKH51-A and SKH51-T and lower than that of TCC. The SKD61-ST1, SKH51-A, and SKH51-T stirring tools exhibited sliding wear after FSP, where the pin and shoulder of the stirring tool formed a phase transfer layer on the surface, and the peeling of the phase transfer layer caused wear weight loss. The main phase of the phase transfer layer of the SKD61-ST1 tool was Al9Co2. The affinity and adhesion energy of the Co-Al phase was lower than that of Fe-Al phase, and the phase transfer layer of the SKD61-ST1 tool was thinner and had lower coverage, thereby increasing the wear resistance of the SKD61-ST1 stirring tools during FSW.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1480
Author(s):  
Assefa Asmare ◽  
Raheem Al-Sabur ◽  
Eyob Messele

The use of aluminum alloys, nowadays, is swiftly growing from the prerequisite of producing higher strength to weight ratio. Lightweight components are crucial interest in most manufacturing sectors, especially in transportation, aviation, maritime, automotive, and others. Traditional available joining methods have an adverse effect on joining these lightweight engineering materials, increasing needs for new environmentally friendly joining methods. Hence, friction stir welding (FSW) is introduced. Friction stir welding is a relatively new welding process that can produce high-quality weld joints with a lightweight and low joining cost with no waste. This paper endeavors to deals with optimizing process parameters for quality criteria on tensile and hardness strengths. Samples were taken from a 5 mm 6061-T6 aluminum alloy sheet with butt joint configuration. Controlled process parameters tool profile, rotational speed and transverse speed were utilized. The process parameters are optimized making use of the combination of Grey relation analysis method and L9 orthogonal array. Mechanical properties of the weld joints are examined through tensile, hardness, and liquid penetrant tests at room temperature. From this research, rotational speed and traverse speed become significant parameters at a 99% confidence interval, and the joint efficiency reached 91.3%.


Author(s):  
R Palanivel ◽  
RF Laubscher ◽  
S Vigneshwaran ◽  
I Dinaharan

Friction stir welding is a solid-state welding technique for joining metals such as aluminum alloys quickly and reliably. This article presents a design of experiments approach (central composite face–centered factorial design) for predicting and optimizing the process parameters of dissimilar friction stir welded AA6351–AA5083. Three weld parameters that influence weld quality were considered, namely, tool shoulder profile (flat grooved, partial impeller and full impeller), rotational speed and welding speed. Experimental results detailing the variation of the ultimate tensile strength as a function of the friction stir welding process parameters are presented and analyzed. An empirical model that relates the friction stir welding process parameters and the ultimate tensile strength was obtained by utilizing a design of experiments technique. The models developed were validated by an analysis of variance. In general, the full impeller shoulder profile displayed the best mechanical properties when compared to the other profiles. Electron backscatter diffraction maps were used to correlate the metallurgical properties of the dissimilar joints with the joint mechanical properties as obtained experimentally and subsequently modeled. The optimal friction stir welding process parameters, to maximize ultimate tensile strength, are identified and reported.


Sign in / Sign up

Export Citation Format

Share Document