Impact Performance of Cellular Core Hybrid Tubes Under Axial Compressive Loading

Author(s):  
Eboreime Ohioma ◽  
Muhammad Ali ◽  
Khairul Alam

Thin wall structures are primarily deployed in automotive chassis to increase the energy absorption capacity of the automobiles in the event of an accident. Researchers have delved into developing lighter structures for improving automobiles’ fuel efficiency with a challenge of maintaining or preferably exceeding the energy absorption properties of the structure. In this study, the work presented is a continuation of research conducted on exploring the effects of the introduction of cellular core in tubular structures under axial compressive loading. The crushing response of cellular core hybrid tube was numerically studied using ABAQUS/Explicit module. The characteristics such as deformation or collapsing modes, crushing/ reactive force, locking strain, energy curves, and specific energy absorbed were studied. The cellular core hybrid tube shows significant potential for reducing the weight of automobile structure while giving positive indication towards enhancing the specific energy absorption capacity.

Author(s):  
Sean Jenson ◽  
Eboreime Ohioma ◽  
Muhammad Ali ◽  
Khairul Alam

Abstract Thin wall structures are primarily deployed in automotive chassis to increase the energy absorption capacity of the automobiles in the event of an accident. Researchers have delved into developing lighter structures for improving automobiles’ fuel efficiency with a challenge of maintaining or preferably exceeding the energy absorption properties of the structure. In this study, the work presented is a continuation of research conducted on exploring the effects of the introduction of cellular core in tubular structures under axial compressive loading. The crushing response of cellular core cross tube was numerically studied using ABAQUS/Explicit module. The characteristics such as deformation or collapsing modes, crushing/ reactive force, locking strain, energy curves, and specific energy absorbed were studied. The cellular core cross tube shows significant potential for reducing the weight of automobile structure while giving positive indication towards enhancing the specific energy absorption capacity.


Author(s):  
Muhammad Ali ◽  
Eboreime Ohioma ◽  
Khairul Alam

Square tubes are primarily used in automotive structures to absorb energy in the event of an accident. The energy absorption capacity of these structural members depends on several parameters such as tube material, wall thickness, axial length, deformation modes, locking strain, crushing stress, etc. In this paper, the work presented is a continuation of research conducted on exploring the effects of the introduction of cellular core in tubular structures under axial compressive loading. Here, the crushing response of composite cellular core tube was numerically studied using ABAQUS/Explicit module. The energy absorbing characteristics such as deformation or collapsing modes, crushing/ reactive force, crushing stroke, and energy curves were discussed. The composite cellular core tube shows promise for improving the crashworthiness of automobiles.


10.29007/6w78 ◽  
2022 ◽  
Author(s):  
Cong Hoa Vu ◽  
Thi Hieu Thao Le ◽  
Phuoc Khanh Huy Nguyen

Crash-dynamics research has always concentrated significantly in the safety, survivability of passengers in a car crash. To identify the capability of energy absorption of a crash box, a thin-walled structure will be modeled and simulated by ABAQUS software. Investigate the influence of material, cross-sectional, thickness factors on the energy absorption capacity of the tube, using MCDM – Multi-Criteria Decision-Making to get the best option and testing the improvement while filling the tube with Foam material. In this study, beside the cross-sectional, aluminum alloys and steel materials and thickness are factors that influence the energy absorption evaluation criteria, the foam material with difference density are surveyed to compare effectiveness between the foam-filled and hollow crashboxes. The results show that the folds of the foam-filled tube after deformation along the compressive direction will be more continuous and stable. More, the higher foam density, the greater the energy absorption. This prevents the crashbox from deviating from the direction of the force, help directing the collapse of the tube, thereby improving energy absorption without significantly increasing the weight of the structure.


2013 ◽  
Vol 437 ◽  
pp. 158-163
Author(s):  
Wei Liang Dai ◽  
Xu Guang Li ◽  
Qing Chun Wang

Energy absorbing characteristics of the non-stiffened and stiffened single hat sections subjected to quasi-static axial crushing were experimentally investigated. First non-stiffened hat sections were axially crushed, then structures with different stiffened methods (stiffened in hat and stiffened in the plate) were tested, finally energy absorption capacities of these structures were compared. Test results showed that, for the appropriate designed stiffened tube, the mean crush force and mass specific energy absorption were increased significantly compared to the non-stiffened. Stiffened in hat section showed a little more energy absorption capacity than that stiffened in the plate, but the structure may sustain a global bending.


2019 ◽  
Vol 54 (10) ◽  
pp. 1281-1304 ◽  
Author(s):  
JE Chambe ◽  
C Bouvet ◽  
O Dorival ◽  
JF Ferrero

The purpose of this study is to evaluate and compare the ability of various composite structures to dissipate the energy generated during a crash. To this end, circular composite tubes were tested in compression in order to identify their behavior and determine their absorbing capabilities using the specific energy absorption (energy absorbed per unit weight). Several composite tubular structures with different materials and architectures were tested, including hybrid composition of carbon–aramid and hybrid configuration of 0/90 UD with woven or braided fabric. Several inventive and experimental trigger systems have been tested to try and enhance the absorption capabilities of the tested structures. Specific energy absorption values up to 140 kJ.kg−1 were obtained, achieving better than most instances from the literature, reaching around 80 kJ.kg−1. Specimens with 0°-oriented fibers coincidental with the direction of compression reached the highest specific energy absorption values while those with no fiber oriented in this direction performed poorly. Moreover, it has consequently been established that in quasi-static loading, a unidirectional laminate oriented at 0° and stabilized by woven plies strongly meets the expectations in terms of energy dissipation. Incidentally, an inner constrained containment is more effective in most cases, reducing the initial peak load without drastically reducing the specific energy absorption value.


2011 ◽  
Vol 117-119 ◽  
pp. 873-875
Author(s):  
Noor Hisyam Bin Noor Mohamed ◽  
Hasmiryadie Juneh ◽  
Mahshuri Yusof

Natural fibers are now becoming a subject of interest to replace synthetic fiber as reinforcement materials where the development of natural fiber composites has been conducted in the last few decades. The objective of this research is to investigate the energy absorption capacity of banana fiber polyester composite and its specific energy absorption capacity as well. Banana fibers are extracted and cut into 10mm, 20mm and 30mm fiber length. Fabrication of rectangular bar as composite samples with different banana fiber length and fiber volume fraction (1%, 2%, and 3%) were conducted and the results are studied and analyzed. The information on energy absorption and specific energy absorption capacity are useful for applications such as automotive structures where the ability to absorb impact may save life. The increase of banana fiber content and length shows an increase of maximum load and energy absorption values for all specimens.


2014 ◽  
Vol 566 ◽  
pp. 586-592
Author(s):  
Steeve Chung Kim Yuen ◽  
Gerald Nurick ◽  
Sylvester Piu ◽  
Gadija Ebrahim

This paper presents the results of an investigation into the response of thin-walled square (60x60 mm and 76x76 mm) tubes made from mild steel filled with four different fillers; aluminium foam (Cymat 7%), two types of aluminium honeycomb and polyurethane foam to quasi-static and dynamic axial impact load. The energy absorption characteristics of the foam-filled tubes are compared to that of a hollow tube, through efficiency calculations. The tubular structures are subjected to axial impact load generated by drop masses of 320 kg and 390 kg released from a height ranging between 2.1 m to 4.1 m. Footage from a high speed camera is used to determine the average crush forces exerted by each specimen. The results show that the fillers have insignificant effects on the initial peak forces based on the quasi-static results but increase the overall mean crushed force. The findings also indicate that the fillers affect at times the size of the lobe formed thus compromising the energy absorption capacity of the tube.


Author(s):  
M Altin ◽  
E Acar ◽  
MA Güler

This paper presents a numerical study of regular and hierarchical honeycomb structures subjected to out-of-plane impact loading. The specific energy absorption capacity of honeycomb structures via nonlinear explicit finite element analysis is investigated. The constructed finite element models are validated using experimental data available in the literature. The honeycomb structures are optimized by using a surrogate-based optimization approach to achieve maximum specific energy absorption capacity. Three surrogate models polynomial response surface approximations, radial basis functions, and Kriging models are used; Kriging models are found to be the most accurate. The optimum specific energy absorption value obtained for hierarchical honeycomb structures is found to be 148% greater than that of regular honeycomb structures.


2015 ◽  
Vol 778 ◽  
pp. 18-23
Author(s):  
Jing Hui Zhao ◽  
Jian Feng Wang ◽  
Tao Liu ◽  
Na Yang ◽  
Wen Jie Duan ◽  
...  

Aluminum honeycomb is a lightweight material with high strength and strong capacity of energy absorption. In order to research energy absorption characteristic of aluminum honeycomb material, quasi-static and dynamic out-of-plane compression experiments are carried out on a double-layer aluminum honeycomb impact attenuator of one FSAE racing car. Plateau stress (PS), specific load (SL), mass specific energy absorption (MSEA), volume specific energy absorption (VSEA) and other parameters of the tested aluminum honeycomb under both quasi-static and dynamic impact conditions are analyzed. The results show that the tested aluminum honeycomb impact attenuator has good energy absorption capacity to meet the collision requirements. Furthermore, under the condition of dynamic impact, the energy absorption capacity of this honeycomb improves compared with that under the condition of quasi static compression.


Sign in / Sign up

Export Citation Format

Share Document