scholarly journals Energy absorption capacity of composite thin-wall circular tubes under axial crushing with different trigger initiations

2019 ◽  
Vol 54 (10) ◽  
pp. 1281-1304 ◽  
Author(s):  
JE Chambe ◽  
C Bouvet ◽  
O Dorival ◽  
JF Ferrero

The purpose of this study is to evaluate and compare the ability of various composite structures to dissipate the energy generated during a crash. To this end, circular composite tubes were tested in compression in order to identify their behavior and determine their absorbing capabilities using the specific energy absorption (energy absorbed per unit weight). Several composite tubular structures with different materials and architectures were tested, including hybrid composition of carbon–aramid and hybrid configuration of 0/90 UD with woven or braided fabric. Several inventive and experimental trigger systems have been tested to try and enhance the absorption capabilities of the tested structures. Specific energy absorption values up to 140 kJ.kg−1 were obtained, achieving better than most instances from the literature, reaching around 80 kJ.kg−1. Specimens with 0°-oriented fibers coincidental with the direction of compression reached the highest specific energy absorption values while those with no fiber oriented in this direction performed poorly. Moreover, it has consequently been established that in quasi-static loading, a unidirectional laminate oriented at 0° and stabilized by woven plies strongly meets the expectations in terms of energy dissipation. Incidentally, an inner constrained containment is more effective in most cases, reducing the initial peak load without drastically reducing the specific energy absorption value.

Author(s):  
Sean Jenson ◽  
Eboreime Ohioma ◽  
Muhammad Ali ◽  
Khairul Alam

Abstract Thin wall structures are primarily deployed in automotive chassis to increase the energy absorption capacity of the automobiles in the event of an accident. Researchers have delved into developing lighter structures for improving automobiles’ fuel efficiency with a challenge of maintaining or preferably exceeding the energy absorption properties of the structure. In this study, the work presented is a continuation of research conducted on exploring the effects of the introduction of cellular core in tubular structures under axial compressive loading. The crushing response of cellular core cross tube was numerically studied using ABAQUS/Explicit module. The characteristics such as deformation or collapsing modes, crushing/ reactive force, locking strain, energy curves, and specific energy absorbed were studied. The cellular core cross tube shows significant potential for reducing the weight of automobile structure while giving positive indication towards enhancing the specific energy absorption capacity.


2013 ◽  
Vol 437 ◽  
pp. 158-163
Author(s):  
Wei Liang Dai ◽  
Xu Guang Li ◽  
Qing Chun Wang

Energy absorbing characteristics of the non-stiffened and stiffened single hat sections subjected to quasi-static axial crushing were experimentally investigated. First non-stiffened hat sections were axially crushed, then structures with different stiffened methods (stiffened in hat and stiffened in the plate) were tested, finally energy absorption capacities of these structures were compared. Test results showed that, for the appropriate designed stiffened tube, the mean crush force and mass specific energy absorption were increased significantly compared to the non-stiffened. Stiffened in hat section showed a little more energy absorption capacity than that stiffened in the plate, but the structure may sustain a global bending.


2019 ◽  
Vol 39 (1-2) ◽  
pp. 60-77 ◽  
Author(s):  
Hongyong Jiang ◽  
Yiru Ren ◽  
Jianqiang Zheng

A type of gradient-degraded material-induced trigger has a greater potential to induce a progressive crushing mode in a controlled manner to reduce the initial crushing load and increase the specific energy absorption. Thus, different material degradation strategy-based triggers are designed to improve the crashworthiness of composite tubes. To understand the triggering mechanisms, effects of height of trigger and level of degradation are studied using single material degradation strategies. In turn, gradient material degradation strategies are novelly presented to explore different crushing behaviors of tube. Further, an improved gradient material degradation gathering all features of single material degradation and gradient material degradation is proposed. The virtual quasi-static crushing tests are conducted where the model considers intra-ply and inter-ply failure initiation and damage evolution. The crushing behaviors of all triggered tubes are compared. From the predicted results, it is found that both the height of trigger and level of degradation have significant effects on the crushing behavior. The multi-phased or progressive initial crushing process is presented by using gradient material degradation. By comparison, the tube using the improved gradient material degradation presents 8.26% lower peak load, 8.75% higher specific energy absorption, and 25% higher crushing load stability than the original tube.


2014 ◽  
Vol 23 (2) ◽  
pp. 096369351402300
Author(s):  
Ping Zhang ◽  
Liang-Jin Gui ◽  
Zi-Jie Fan ◽  
Jing-Yu Liu

This paper presented an experimental study on the low-velocity impact response of triaxial braided composite circular tubes, which were fabricated with S-glass/epoxy composite. The impact responses were recorded and analyzed in terms of impact load-displacement curves and specific energy absorption. In addition, four basic failure modes called delaminating, splaying, fragmental fracture and progressive folding were founded. The levels of the mean impact load and specific energy absorption (SEA) are determined by the energy absorption mechanisms, which are related to the dominant failure modes of the tubes. In general, delamination which exhibits the poor energy absorbing performance is the dominant failure mode for all the specimens. Impact test results showed that all three types of tubes had almost the same SEA. Compared to the quasi-static test results, the first peak load and the mean load decrease at about 50% and 10% respectively, SEA generally decreases at an average level 10%.


2020 ◽  
Vol 40 (7) ◽  
pp. 615-627
Author(s):  
Mohd Kamal Mohd Shah ◽  
Yeo Kiam Beng ◽  
Sanjay Mohan ◽  
Mohd Nizam Husen ◽  
Irma Othman ◽  
...  

AbstractPultrusion is considered to be a cost efficient method for developing composite structures. It facilitates the fabrication of uniform cross-section products with improved fiber alignment, mechanical properties, good surface characteristics, etc. In order to ascertain the crashworthiness, the pultruded composites shall be able to resist impact loads, and in this concern, the energy absorption capacity of the pultruded composites must be explored. This article presents the experimental and numerical investigation of the crushing behavior of polyester based pultruded composite with rectangular cross section. Pultruded rectangular tubes with e-glass/polyester composites have been developed for this study. The cross-section of the tubes was developed into two triggering profiles, the uniform edge around the section and the tulip pattern. The tubes were subjected to impact loads, and the effect of these triggering profiles on the energy absorption capacity of the tubes has been investigated. The testing of all composites has been carried out at three different impact velocities (10, 20 and 45 mm/min). The results have revealed the dependence of crushing behavior of the tubes on the loading velocity and the triggered profiles. Lower peak load and high specific energy absorption (SEA) was observed in the tube with tulip pattern profile. The results obtained from the simulation have also shown consistency with the real-time experiments.


2018 ◽  
Vol 49 (2) ◽  
pp. 162-180 ◽  
Author(s):  
Zhenyu Wu ◽  
Maolin Wang ◽  
Zhiping Ying ◽  
Xiaoying Cheng ◽  
Xudong Hu

This paper reports the mechanical response of semi-hexagonal part with three different multi-layer reinforcements. Unidirectional, plain woven and orthogonal fabric under quasi-static axial compression were considered. Meso-scale finite element numerical models with failure criterion were also established to simulate the onset and development of internal damage during the compression process. There were two different crush-failure modes occurring in the crush tests of the three different composite samples: a splaying mode for samples with unidirectional fabric, a buckling mode for samples with 3D orthogonal woven fabric and a mixture mode of both buckling and splaying for samples with the plain woven fabric. The samples reinforced by unidirectional fiber have the highest specific energy absorption and lowest peak loading, whereas the samples by 3D orthogonal fabric present the lowest specific energy absorption and highest peak loading. It was also demonstrated by a numerical model that the existence of Z-binder suppresses the delamination by restraining the expanding of warp and weft yarns. The comparison of numerical results and experimental data indicates that the structure of reinforcement has a significant role in the mechanical performance of textile composite.


2011 ◽  
Vol 117-119 ◽  
pp. 873-875
Author(s):  
Noor Hisyam Bin Noor Mohamed ◽  
Hasmiryadie Juneh ◽  
Mahshuri Yusof

Natural fibers are now becoming a subject of interest to replace synthetic fiber as reinforcement materials where the development of natural fiber composites has been conducted in the last few decades. The objective of this research is to investigate the energy absorption capacity of banana fiber polyester composite and its specific energy absorption capacity as well. Banana fibers are extracted and cut into 10mm, 20mm and 30mm fiber length. Fabrication of rectangular bar as composite samples with different banana fiber length and fiber volume fraction (1%, 2%, and 3%) were conducted and the results are studied and analyzed. The information on energy absorption and specific energy absorption capacity are useful for applications such as automotive structures where the ability to absorb impact may save life. The increase of banana fiber content and length shows an increase of maximum load and energy absorption values for all specimens.


2018 ◽  
Vol 22 (3) ◽  
pp. 572-598 ◽  
Author(s):  
Hossein Taghipoor ◽  
Mohammad Damghani Nouri

The performance of sandwich structure with expanded metal sheets as the core was studied under axial crushing and transverse impact bending. Relationships between the force and displacement at the mid-span of the sandwich beams were obtained from the experiments. Numerical simulations were carried out using ABAQUS/EXPLICIT and the results were thoroughly compared with the experimental results. Then, the influence of the cell orientation and size of the cell were investigated. It was shown that the cell orientation was a critical parameter affecting the failure mode and energy absorption capability, leading to the increase in the peak load and specific energy absorption during the axial crushing tests. Specific energy absorption of the sandwich beams with lattice core under axial crushing ranges from 117 to 2934 J/kg, which is higher than that of beams under transverse bending. The results showed that the increase in cell angle up to ϴ = 90 increased the energy absorption by 624.4%. It was found that effects of the cell size and cell orientation on the energy absorption were dependent on each other governing the low-velocity impact response of the sandwich beams with lattice cores.


Author(s):  
M Altin ◽  
E Acar ◽  
MA Güler

This paper presents a numerical study of regular and hierarchical honeycomb structures subjected to out-of-plane impact loading. The specific energy absorption capacity of honeycomb structures via nonlinear explicit finite element analysis is investigated. The constructed finite element models are validated using experimental data available in the literature. The honeycomb structures are optimized by using a surrogate-based optimization approach to achieve maximum specific energy absorption capacity. Three surrogate models polynomial response surface approximations, radial basis functions, and Kriging models are used; Kriging models are found to be the most accurate. The optimum specific energy absorption value obtained for hierarchical honeycomb structures is found to be 148% greater than that of regular honeycomb structures.


2020 ◽  
pp. 152808372097442
Author(s):  
Vikas Khatkar ◽  
Bijoya Kumar Behera

In advanced engineering applications, machining of composite material is a must to perform necessary assembly operations. This work deals with the investigation of fabrication potential of Glass/epoxy composites reinforced with different textile structures in the form of E-glass based chopped fiber, unidirectional (UD) tow, bidirectional (2D) plain woven, four different 3D woven orthogonal solid structures with varying binder percentage and one 3D woven angle interlock structure. The Influence of reinforcement architecture on tensile strength, drilling damage, bearing response, specific energy absorption (bending), and spring stiffness of composites structure was investigated. Damage analysis due to drilling was primarily assessed in terms of delamination whereas bearing strength, bearing strain and common bearing failure were examined from the bearing strength test. Different bearing failure was observed for different composite structures; UD composite was noticed with complete shear out failure while chopped failed due to tearing and 2D structure reinforced composite predominantly failed due to tearing and delamination failure. 3D orthogonal composite failed due to tearing in the warp direction and shear out in weft direction whereas 3D interlock failed due to tearing in both warp and weft direction. 3D orthogonal based composite structure exhibited the highest specific energy absorption (SEA) along with improved spring stiffness and therefor it could be a potential material for automotive leaf spring application.


Sign in / Sign up

Export Citation Format

Share Document