Linkage Synthesis for Solar Tracking

Author(s):  
Kavan Jani ◽  
Hong Zhou ◽  
Chung Leung

Solar trackers orient solar panels toward the Sun to increase solar energy harvesting. To enhance solar energy capture, solar trackers change solar panels’ orientation throughout the day to follow the Sun’s path and make solar panels normal to the solar ray. The current solar trackers make solar panels perpendicular to the solar ray because of the active motion control of the solar panels. However, they also consume considerable power since the motion of solar panels is usually generated by two motors simultaneously and continuously. The merits of the existing sensor-based dual-axis solar trackers are compromised by their motor power consumption. In this research, the Sun’s location relative to an arbitrary point on Earth is determined at any time on any day in any year. Because of the determined solar location and path, only one axis is needed for the proposed solar tracker since it does not rely on any sensor to determine the Sun’s location. The current single-axis solar trackers face challenges on the limited oscillation range of the solar panels and the potential interference between an oscillating solar panel and its corresponding ground. In this paper, a sensor-free single-axis solar tracking linkage is designed to surmount these challenges. The solar tracking motion of the designed linkage is simulated. The designed linkage is fabricated and tested. The motion of the fabricated linkage is controlled by a microcontroller to generate the desired intermittent solar tracking motion.

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 1381
Author(s):  
Jacek Harazin ◽  
Andrzej Wróbel

Roof mounted solar panels come in form of fixed panels, unable to adjust to sun’s position during day and throughout the year. As an effect, the efficiency of such solution is usually dependent on the roof slope and position of the building in relation to sun’s day arc during seasons. These problems can be bypassed in free standing solar installations by equipping solar panels with solar tracker installations. Thanks to solar tracking, solar panels can be dynamically positioned perpendicular to the sun position and gather energy more efficiently throughout the day. This article presents a possibility of creating a roof mounted solar tracking panel to increase its efficiency. A prototype of solar tracking panel with two axes of movement was designed with an intention of an easy adaptation to being mounted on sloped surfaces of building roofs. A reference stationary panel was used to compare the efficiency of both solutions. A 5-day study was carried out to determine if the proposed solution could provide any benefits. Based on the study, the authors made an attempt to draw a conclusion whether the design could considerably increase the solar energy output to be worth the extra spending associated with solar tracker installation.


Author(s):  
Siti Amely Jumaat ◽  
Mohamad Nur Aiman Mohd Said ◽  
Clarence Rimong Anak Jawa

This project aims to develop dual axis solar tracker with IOT monitoring system using Arduino. Generally, solar energy is the technology to get useful energy from sunlight. Solar energy has been used in many traditional technologies over the centuries and has been widely used in the absence of other energy supplies. Its usefulness is widespread when awareness of the cost of the environment and the supply is limited by other energy sources such as fuel. The solar tracking system is the most effective technology to improve the efficiency of solar panels by tracking and following the sun's movement. With the help of this system, solar panels can improve the way of sunlight detection so that more electricity can be collected as solar panels can maintain a sunny position. Thus the project discusses the development of two-axis solar-tracking developers using Arduino Uno as main controller the system. For develops this project, four light-dependent resistors (LDRs) have been used for sunlight detection and a maximum light intensity. Two servo motors have been used to rotate the solar panel according to the sun's light source detected by the LDR. Next a WIFI ESP8266 device is used as an intermediary between device and IOT monitoring system. The IOT monitoring system is a website that functions to store data. The efficiency of this system has been tested and compared with a single axial solar tracker. As a result, the two-axis solar tracking system generates more power, voltage and current.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012024
Author(s):  
Lim Xin You ◽  
Nordiana Shariffudin ◽  
Mohd Zamri Hasan

Abstract Nowadays, solar energy’s popularity is growing consistently every year, along with the growth of amazing solar technologies, which is considered to be one of the most popular. Non-renewable energy like petrol and gasoline is being replaced with solar energy, which is renewable energy. The main objective of this project is to design and simulate a robot solar system. The robot is developed using Arduino Mega 2560 as the main brain of the system. This system is equipped with a solar tracking system to track the movement of the sun and LDR is used to detect the presence of sunlight. The solar tracker is used to get the maximum efficiency of solar energy and reduce power losses. In addition, the solar tracker can rotate from 0° - 180°, which is the best angle for the solar panel to reach the sunlight. This robot will be attached to the sprinkler system to perform the watering process. This robot is developed for use in the agriculture field to reduce the manpower and cost of the watering process. Three analyses will be conducted in this project such as solar panel analysis, Wi-Fi connectivity analysis and sprinkler system analysis. The result shows the solar panel will gain the highest intensity of the sunlight at 12.00 pm and a sunny day compared to the other time and a cloudy day. The maximum range of Wi-Fi connectivity and the water pump, time used to finish the watering process and watering area will be discussed.


Author(s):  
Jay Dipak Betai ◽  
Hong Zhou

Abstract Solar trackers make solar panels perpendicular to solar ray to enhance solar power reaping. The relative motion between Sun and Earth has two degrees of freedom. Sun travels from east to west during daytime and also moves north and south due to Earth’s tilt. However, Sun’s daily north-south move is much smaller than its east-west move. Sensor-based solar trackers make solar panels perpendicular to solar ray based on sensor information. Although the existing sensor-based solar trackers increase solar power reaping from solar panels significantly, they also consume considerable power by driving solar trackers. Sensorless solar trackers make solar panels perpendicular to solar ray based on calculated solar location. The performance of sensorless solar trackers is not affected by bad weather. This paper is on sensorless solar trackers. Single-axis solar trackers have one degree of freedom solar tracking motion. They can catch Sun’s daily east-west movement effectively. The Sun’s small north-south movement can be covered for single-axis solar trackers by monthly or seasonal adjustment of their orientations. This research is focused on single-axis sensorless solar trackers that are driven by linear actuators. The advantages of linear actuator driven solar trackers are their self-locking function and high load carrying capacity. Their challenges include limited solar panel motion range, potential interference between an oscillating solar panel and its fixed supporting ground link, and high motor power consumption for solar tracking. The research of this paper is motivated by surmounting the challenges facing sensorless single-axis linear actuator driven solar trackers. In this research, linear actuator driven solar trackers will be designed and analyzed. The models of the designed solar trackers will be developed. The kinematic and dynamic performances of the modeled solar trackers will be analyzed and simulated. The results of this research will provide some guidelines for developing linear actuator driven solar trackers.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5226
Author(s):  
Nurzhigit Kuttybay ◽  
Ahmet Saymbetov ◽  
Saad Mekhilef ◽  
Madiyar Nurgaliyev ◽  
Didar Tukymbekov ◽  
...  

Improving the efficiency of solar panels is the main task of solar energy generation. One of the methods is a solar tracking system. One of the most important parameters of tracking systems is a precise orientation to the Sun. In this paper, the performance of single-axis solar trackers based on schedule and light dependent resistor (LDR) photosensors, as well as a stationary photovoltaic installation in various weather conditions, were compared. A comparative analysis of the operation of a manufactured schedule solar tracker and an LDR solar tracker in different weather conditions was performed; in addition, a simple method for determining the rotation angle of a solar tracker based on the encoder was proposed. Finally, the performance of the manufactured solar trackers was calculated, taking into account various weather conditions for one year. The proposed single-axis solar tracker based on schedule showed better results in cloudy and rainy weather conditions. The obtained results can be used for designing solar trackers in areas with a variable climate.


2019 ◽  
Vol 5 (3) ◽  
Author(s):  
Wendryanto Wendryanto ◽  
Gede Widayana ◽  
I Wayan Sutaya

ABSTRAK     Prototipe ini didesain agar panel surya mampu senantiasa tegak lurus dengan matahari dengan menggunakan Arduino Nano 3.0 Atmega 328 CH340G sebagai control otomatis, serta komponen lain seperti sensor cahaya (LDR) dan motor DC. Prinsip kerja dari mikrokontroler ini dalam penggerak panel surya 2 sumbu ini yaitu output dari sensor LDR diolah oleh mikrokontroler Arduino Nano 3.0 Atmega 328 CH340G dengan menggunakan bahasa pemrograman. Apabila sensor LDR tidak tegak lurus terhadap matahari, maka akan memiliki nilai tahanan yang berbeda. Jika terjadi perbedaan maka mikrokontroler akan merespon dan menggerakkan motor agar medapat nilai resistansi yang sama. Dari hasil pengujian dengan membandingkan panel surya yang statis, dengan pengerak 1 sumbu dan dengan penggerak 2 sumbu, didapat bahwa panel surya yang dilengkapi dengan penggerak 2 sumbu memiliki daya serap energi matahari yang lebih optimal. Hal ini dibuktikan dengan pengukuran tegangan listrik yang dihasilkan panel surya lebih besar apabila dibandingkan dengan panel surya yang statis maupun yang dengan penggerak 1 sumbu. Dari data yang didapat, terjadi peningkatan tegangan mulai pukul 09.00 dan tegangan maksimal yang didapat terjadi pada pukul 12.00, setelah itu terjadi penurunan tegangan yang dihasilkan. Kata-kata kunci : Arduino Nano 3.0 Atmega 328ch340g, Motor DC, Penggerak Panel Surya 2 Sumbu.ABSTRACTThis prototype is design for has be able to track the position of the sun with using an Arduino Nano 3.0 Atmega 328 CH340G for automatic control, with another component as well as LDR censor, and DC motor. The principle of this microcontroller in solar tracker dual axis is output of LDR censor processed by microcontroller Arduino Nano 3.0 ATmega 328 CH340G with assembly. If the LDR cencor not perpendicular with sun light, so cencor LDR have a deiferification the value of resistance. If that happens, so microcontroller will respond and move the DC motor to get the same value of resistance. Of the test result of compare static solar energy, solar tracker with one axis, and solar tracker with dual axis, be obtained that solar tracking with dual axis have a power to exploit of the sun light is more optimally. This can be proved with measuring of electrical voltage greater than static solar energy as well solar tracker with one axis. From the obtained of data, the increase of electrical voltage start from at 09.00 am and maksimum electrical voltage can be reach from 12.00 am, after that happen decline of electrical voltage. Key Words: Arduino Nano ATmega 328 CH340G, DC Motor, Solar Tracker Dual Axis,


2018 ◽  
Vol 24 (2) ◽  
pp. 134
Author(s):  
Robby Rachmatullah ◽  
Dessyana Kardha ◽  
Dani Triwiyanto

The transfer of electrical energy sources from non-renewable fossil fuels to alternative renewable fuels can be made by utilizing solar energy. The working system of arduino uno solar tracking system for STMIK AUB garden lights is by capturing solar energy through solar panels which are then stored inside the battery where the charging process is controlled by solar charge controller. LDR functions to receive and identify the radiated light quantities which are then forwarded into the arduino uno and processed to drive the DC motor that has become one with the solar panel. If the day begins to darken the LDR will inform the arduino uno and then it will be processed by arduino uno to turn on the DC light.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012016
Author(s):  
Wen-Lan Wang ◽  
Xiong-Huai Bai

Abstract The Inner Mongolia has abundant solar energy and electricity resources. Because of the long distance between cities, transmission lines are too long, making it difficult to check lines. In order to solve the problems existing in the inspection work, this paper studies a kind of outdoor inspection vehicle using solar energy, the energy system of the inspection vehicle can independently complete the charge and discharge, so as to realize the inspection task. This paper focuses on the energy autonomy of the on-site inspection vehicle for solar energy. According to the design requirements of the inspection vehicle, appropriate parts are selected to build an energy autonomy inspection system for the inspection vehicle. Then the solar tracking algorithm and maximum power tracking control algorithm are used to improve the conversion rate of solar panels and achieve fast charging. Finally, the hardware and software of the solar controller are designed, and the corresponding functions are debugged.


2020 ◽  
Author(s):  
Orlando Soares de Santana Filho ◽  
Carlos Henrique Mota Martins ◽  
Thiago Henrique Felix C. Ribeiro Conceição ◽  
Alex Vinicius dos Reis Freitas Silva ◽  
Adriano Honorato Braga ◽  
...  

Solar energy is a renewable and inexhaustible source, besidescausing damage to nature, being clean and sustainable.Transform the electromagnetic radiation emitted by the Sunelectrical energy are used solar panels. In order to improveefficiency and performance of this capture, a low-cost wasbuilt, a single-axis solar tracking system for photovoltaicpanels. The solution uses the automation Arduino UNO R3,open hardware, two photosensitive sensors LDR GL-5528, inaddition to a servo motor capable of moving the surface of aphotovoltaic plate according to the detection of the highestincidence of light. The circuit and its components wereprogrammed using the Arduino IDE software, version 1.8.11.As a result, it was possible to follow the movement of thesun, differing from a static panel, thus ensuring greater sunshineon the solar plate, as a result of this traceablecontrol prototype.


Author(s):  
Nur Farahida Mohd Shamsuddin Tan ◽  
◽  
Muhammad Heidzer Zainal Abidin ◽  
Lukman Iqbal Hussein ◽  
Mohd Hezri Mokhtar ◽  
...  

The project is to design an active solar tracking system which able to track the sunlight with the aid of light dependent resistor (LDR) as input sensor to read the intensity of sunlight. The solar tracking system uses platform as a base and it is moved by a servo motor as the platform needs to be moved towards the sunlight to get the optimum light. The solar tracking system is programmed by using microcontroller Arduino Uno as a main controller. After the setup of the hardware and program, the tracking motion of the tracking system has been implemented to track the sun based on sunlight direction. In this work, it is designed that the motion of the tracking system is depends on the value read by LDR. As a conclusion, the solar tracking system can increase the solar panels efficiency by keeping the solar panels perpendicular with sun’s position.


Sign in / Sign up

Export Citation Format

Share Document