scholarly journals Qualitative Phytochemical Analysis and Antibacterial Potential of Chromolena Odorata Leaves as affected by Soxhlet and Maceration Extraction

Author(s):  
Nur Farahida Mohd Shamsuddin Tan ◽  
◽  
Muhammad Heidzer Zainal Abidin ◽  
Lukman Iqbal Hussein ◽  
Mohd Hezri Mokhtar ◽  
...  

The project is to design an active solar tracking system which able to track the sunlight with the aid of light dependent resistor (LDR) as input sensor to read the intensity of sunlight. The solar tracking system uses platform as a base and it is moved by a servo motor as the platform needs to be moved towards the sunlight to get the optimum light. The solar tracking system is programmed by using microcontroller Arduino Uno as a main controller. After the setup of the hardware and program, the tracking motion of the tracking system has been implemented to track the sun based on sunlight direction. In this work, it is designed that the motion of the tracking system is depends on the value read by LDR. As a conclusion, the solar tracking system can increase the solar panels efficiency by keeping the solar panels perpendicular with sun’s position.

2020 ◽  
Author(s):  
Orlando Soares de Santana Filho ◽  
Carlos Henrique Mota Martins ◽  
Thiago Henrique Felix C. Ribeiro Conceição ◽  
Alex Vinicius dos Reis Freitas Silva ◽  
Adriano Honorato Braga ◽  
...  

Solar energy is a renewable and inexhaustible source, besidescausing damage to nature, being clean and sustainable.Transform the electromagnetic radiation emitted by the Sunelectrical energy are used solar panels. In order to improveefficiency and performance of this capture, a low-cost wasbuilt, a single-axis solar tracking system for photovoltaicpanels. The solution uses the automation Arduino UNO R3,open hardware, two photosensitive sensors LDR GL-5528, inaddition to a servo motor capable of moving the surface of aphotovoltaic plate according to the detection of the highestincidence of light. The circuit and its components wereprogrammed using the Arduino IDE software, version 1.8.11.As a result, it was possible to follow the movement of thesun, differing from a static panel, thus ensuring greater sunshineon the solar plate, as a result of this traceablecontrol prototype.


2013 ◽  
Vol 724-725 ◽  
pp. 43-51 ◽  
Author(s):  
Yu En Wu ◽  
Kuo Chan Huang

This paper presents a smart dual-axis solar tracking system, its architecture includes sensors, embedded controllers, AC motors, Integrated electric putter design biaxial institutions, and the GSM automatic report of fault notification, to achieve autonomous tracking solar track system and adjust the solar panels to reach the maximum smooth by tracking the solar azimuth angle and elevation angle, and ensure that the solar panels with the sun to maintain the vertical in any time and any place, thus achieving the best power efficiency. This system proposed a dual-axis design, and an embedded controller used as the main system controller to detect voltage difference and determine the solar azimuth angle with four groups of CDS as a sensing element. To lock the sun, the solar panels be perpendicular via the moving of AC motor (EW) and motorized faders (north-south). The control system software using C language can be extremely fast and accurate tracking of the solar angle, and dual-axis operation with recovery mode to save the power loss. Finally, we have the actual analysis and verification of benefit of power generation in this paper, from this experimental results, we can verify the integration of build dual-axis solar tracking system and solar power system have promoted 30% generating power capacity more than fixed solar power system and has low failure rate. It can improve the problem of traditional tracking system reliability and greatly enhance the usefulness of this system.


2018 ◽  
Vol 24 (2) ◽  
pp. 134
Author(s):  
Robby Rachmatullah ◽  
Dessyana Kardha ◽  
Dani Triwiyanto

The transfer of electrical energy sources from non-renewable fossil fuels to alternative renewable fuels can be made by utilizing solar energy. The working system of arduino uno solar tracking system for STMIK AUB garden lights is by capturing solar energy through solar panels which are then stored inside the battery where the charging process is controlled by solar charge controller. LDR functions to receive and identify the radiated light quantities which are then forwarded into the arduino uno and processed to drive the DC motor that has become one with the solar panel. If the day begins to darken the LDR will inform the arduino uno and then it will be processed by arduino uno to turn on the DC light.


Author(s):  
Kanhaiya Kumar ◽  
Lokesh Varshney ◽  
A. Ambikapathy ◽  
Inayat Ali ◽  
Ashish Rajput ◽  
...  

<p>Electricity is a major source of energy for fast growing population and the use of nonrenewable source is harmful for our environment. This reason belongs to devastating of environment, so it is required to take immediate action to solve these problems which result the solar energy development. Production of a solar energy can be maximizing if we use solar follower. The major part of solar panels is microcontroller with arrangement of LDR sensor is used to follow the sun, where the sensors is less efficient to track the sun because of the low sensitivity of LDR. We are proposing a method to track sun more effetely with the help of both LDR sensors and image processing. This type of mechanism can track sun with the help of image processing software which combines both result of sensors and processed sun image to control the solar panel. The combination of both software and hardware can control thousands of solar panels in solar power plants.</p>


Author(s):  
Belly Yan Dewantara ◽  
Daeng Rahmatullah

<em>Nowadays solar panel is widely used as an independent power plant, it can be seen the many applications of solar panels on electrical equipment, such as traffic light, general lighting, etc. The energi produced by solar panel is affected by the absorbed sunlight. generally solar panels are implemented statically, this causes the absorption of solar energi is not maximal in the morning and afternoon. To maximize the absorption of sunlight, solar panels must always be facing perpendicular to the position of the sun. Automatic solar tracking system is needed to solve these problems, It is makes solar panels always perpendicular to the sun and can follow the movement of the sun, so that the absorption of solar energi is more leverage. The results of the test show the use of automatic tracking system to get the maximum absorption of solar energi indicated by a more stable voltage output,and the power generated is greater than using a static solar panel. Automatic Sun Tracking System (ASTS) increase the average power up to ± 39-41 watt / day with the efficiency of ASTS 81.66% on PV panel 50 WP.</em>


2021 ◽  
Vol 2145 (1) ◽  
pp. 012052
Author(s):  
N Chaijum ◽  
L Cheunchantawong ◽  
T Siriram

Abstract This article is about designing and building a single-axis solar tracking system referring to the sun position database. The objectives are as follows: 1. to design and build a solar tracking system, and, 2. to compare the power produced from the solar tracking system with that from the stationary solar panel. The angle of the solar panel from the solar tracking system is positioned at a constant altitude angle, 15 degrees, facing south, and the moving part was the azimuth, which follows the position of the sun. Latitude and longitude coordinates are identified by an Arduino UNO R3 microcontroller board for processing data, reading coordinates of the sun’s angle degrees from the SD card module, and commanding the servo motor to rotate to adjust the angle of the solar panel in a position perpendicular to the sun. Results from the experiment were collected in October 2020 from 9 AM to 4 PM. The system changed the angle degree every 30 minutes. It is found that the solar tracking system can easily be created and controlled, and can also accurately follow the sun’s position all day long. Moreover, it can generate more electric power than that generated by the stationary solar panel by up to 15%. The system is applicable and can generate more electric power than other tracking systems, although the results were collected during the rainy season when the weather was generally cloudy and rainy throughout the month.


Author(s):  
Moch Nur Qomaruddin ◽  
Matlubul Khairi

One of the new and renewable energy is the utilization of sunlight into electricity. which can be used to be converted into electrical energy using solar panels. Installation of solar panels that are installed for garden lights so far are often still placed in a static position (silent) at an angle of 90⁰, while the sun moves from sunrise to sunset. Because it will cause maximum energy absorption in solar panels placed in a static position only at 12:00. To overcome this problem a system is needed to track the position of the sun so that it is always perpendicular to the surface of the solar panel. Design and build Garden lights with a solar light tracking system on a microcontroller-based solar panel will later be made to move as it follows the direction of the sun's movement every hour, from sunrise to sunset. This tool will detect the time setting inputted by Real Time Clock (RTC) which is then processed by a microcontroller to drive a servo motor that functions as a solar panel drive machine so that the position of the solar panel will always be perpendicular to the sun throughout the day and the absorption of energy in the solar panel will more leverage. From the results of tests that have been done, the increase in the voltage of solar panels using a tracking system compared to solar panels without using a tracking system is 7.85%.


Author(s):  
Saman Sarkawt Jaafar ◽  
Farhad Muhsin Mahmood

This paper is regarding design and program an Micro-controller Arduino Uno board by using Arduino software to work as a photo-sensor(Active) single axial solar tracker system(SASTS). A solar panel, two photo-resistors (LDR) in two sides (north/south) of the photo-voltaic(PV) and a servo motor are connected to the Uno board, which is running a code that prepared by Arduino software IDE in advanced then it works as a tracking system. Here, the LDRs send the signal of presence or absence of the light to the board and based on that sent signal the Uno reflects a new signal to the servo motor to rotate and finds the light source. Lastly, the photo-sensor single axis tracker is made while Continuously, the system tries to face the panel to the sun and whilst changing the irradiance intensity it starts searching to find the angle of highest irradiance. Based on results that are extracted from the data, the tracker system significantly boosts the output efficiency of the solar panel. By using the Micro-controller Uno board, LDRs, servo motor and special designed mechanical base, the tracking system is constructed, based on acquired data the influence of the STS on the increasing the solar panel efficiency is more obvious. Significantly, the tracker system rises the efficiency of the PV .


2019 ◽  
Vol 4 (2) ◽  
pp. 1-10
Author(s):  
Fei Lu Siaw ◽  
◽  
Tzer Hwai Gilbert Thio ◽  
Suhail Hassan Elyas ◽  
◽  
...  

The performance of solar photovoltaic systems can be improved if solar modules are kept perpendicular to the direction of solar radiation. Therefore, an accurate solar tracker system is important to continuously orientate solar modules to be always perpendicular to the solar radiation throughout the day. This paper presents the development and testing of a selfadjusting single-axis solar tracking system using two photovoltaic cells as photosensors. A prototype of the single-axis solar tracking system is built and tested based on continuous tracking method to the sun’s position throughout the day. An Arduino UNO microcontroller, a servo motor, and photovoltaic cells are selected as the components of the prototype. As this is an active tracking system, the orientation of the tracker receiver surface depends on the feedback received from the photosensors. Outdoor tests were carried out under clear skies at Kota Damansara, Malaysia (3.1467512 N, 101.5740615 E). The tracking inaccuracy is less than 5% with the maximum being 4.12%.


Author(s):  
Alex Wenda ◽  
Rendy Dwi Putra

This research optimizes the absorption of solar energy in solar panels by designing mechanical systems that can move solar panels in the direction of incoming sunlight. Light-sensitive sensors are used to track the sun. The solar tracking system is designed using two axes, namely rotation axis and the tilt axis. Both axes are driven by servo motors based on light-sensitive sensors. The system was developed using an ATmega328 microcontroller unit. The test results found that using solar tracking the amount of energy produced was greater than static solar panels. Radiation generated between solar tracking and static sun can increase by 55.2%.


Sign in / Sign up

Export Citation Format

Share Document