scholarly journals Analysis and study of the potential increase in energy output generated by prototype solar tracking, roof mounted solar panels

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 1381
Author(s):  
Jacek Harazin ◽  
Andrzej Wróbel

Roof mounted solar panels come in form of fixed panels, unable to adjust to sun’s position during day and throughout the year. As an effect, the efficiency of such solution is usually dependent on the roof slope and position of the building in relation to sun’s day arc during seasons. These problems can be bypassed in free standing solar installations by equipping solar panels with solar tracker installations. Thanks to solar tracking, solar panels can be dynamically positioned perpendicular to the sun position and gather energy more efficiently throughout the day. This article presents a possibility of creating a roof mounted solar tracking panel to increase its efficiency. A prototype of solar tracking panel with two axes of movement was designed with an intention of an easy adaptation to being mounted on sloped surfaces of building roofs. A reference stationary panel was used to compare the efficiency of both solutions. A 5-day study was carried out to determine if the proposed solution could provide any benefits. Based on the study, the authors made an attempt to draw a conclusion whether the design could considerably increase the solar energy output to be worth the extra spending associated with solar tracker installation.

Author(s):  
Yuli Prasetyo ◽  
Budi Triyono ◽  
Hendrik Kusbandono

Solar energy is a renewable energy. Solar energy can be utilized using solar panels. The use of solar panels mostly uses static or silent methods. The static method on solar panels cannot produce optimal electrical energy. This is because the intensity of sunlight received by solar panels is less than optimal. So that the resulting electrical energy is not optimal. Therefore we need a system that can control solar panels automatically. this system must also be able to follow the direction of movement of sunlight. This study discusses the dual axis solar tracker using smart relay-based astronomical methods. This study adjusts the angle of the solar panels to determine the movement of the sun. This study uses a smart relay to regulate the rotation of the DC motor (Linear Actuator) and the motor power window which functions as a driving force for solar panels. Astronomical method is used for tracking sunlight. This method is based on the position of the sun according to the lunar calendar. This method uses an angle sensor in the form of a variable resistor for elevation and a rotary encoder as an azimuth angle sensor. The results obtained from this study are the optimal electrical energy output from solar energy.


2019 ◽  
Vol 5 (3) ◽  
Author(s):  
Wendryanto Wendryanto ◽  
Gede Widayana ◽  
I Wayan Sutaya

ABSTRAK     Prototipe ini didesain agar panel surya mampu senantiasa tegak lurus dengan matahari dengan menggunakan Arduino Nano 3.0 Atmega 328 CH340G sebagai control otomatis, serta komponen lain seperti sensor cahaya (LDR) dan motor DC. Prinsip kerja dari mikrokontroler ini dalam penggerak panel surya 2 sumbu ini yaitu output dari sensor LDR diolah oleh mikrokontroler Arduino Nano 3.0 Atmega 328 CH340G dengan menggunakan bahasa pemrograman. Apabila sensor LDR tidak tegak lurus terhadap matahari, maka akan memiliki nilai tahanan yang berbeda. Jika terjadi perbedaan maka mikrokontroler akan merespon dan menggerakkan motor agar medapat nilai resistansi yang sama. Dari hasil pengujian dengan membandingkan panel surya yang statis, dengan pengerak 1 sumbu dan dengan penggerak 2 sumbu, didapat bahwa panel surya yang dilengkapi dengan penggerak 2 sumbu memiliki daya serap energi matahari yang lebih optimal. Hal ini dibuktikan dengan pengukuran tegangan listrik yang dihasilkan panel surya lebih besar apabila dibandingkan dengan panel surya yang statis maupun yang dengan penggerak 1 sumbu. Dari data yang didapat, terjadi peningkatan tegangan mulai pukul 09.00 dan tegangan maksimal yang didapat terjadi pada pukul 12.00, setelah itu terjadi penurunan tegangan yang dihasilkan. Kata-kata kunci : Arduino Nano 3.0 Atmega 328ch340g, Motor DC, Penggerak Panel Surya 2 Sumbu.ABSTRACTThis prototype is design for has be able to track the position of the sun with using an Arduino Nano 3.0 Atmega 328 CH340G for automatic control, with another component as well as LDR censor, and DC motor. The principle of this microcontroller in solar tracker dual axis is output of LDR censor processed by microcontroller Arduino Nano 3.0 ATmega 328 CH340G with assembly. If the LDR cencor not perpendicular with sun light, so cencor LDR have a deiferification the value of resistance. If that happens, so microcontroller will respond and move the DC motor to get the same value of resistance. Of the test result of compare static solar energy, solar tracker with one axis, and solar tracker with dual axis, be obtained that solar tracking with dual axis have a power to exploit of the sun light is more optimally. This can be proved with measuring of electrical voltage greater than static solar energy as well solar tracker with one axis. From the obtained of data, the increase of electrical voltage start from at 09.00 am and maksimum electrical voltage can be reach from 12.00 am, after that happen decline of electrical voltage. Key Words: Arduino Nano ATmega 328 CH340G, DC Motor, Solar Tracker Dual Axis,


Author(s):  
Kanhaiya Kumar ◽  
Lokesh Varshney ◽  
A. Ambikapathy ◽  
Inayat Ali ◽  
Ashish Rajput ◽  
...  

<p>Electricity is a major source of energy for fast growing population and the use of nonrenewable source is harmful for our environment. This reason belongs to devastating of environment, so it is required to take immediate action to solve these problems which result the solar energy development. Production of a solar energy can be maximizing if we use solar follower. The major part of solar panels is microcontroller with arrangement of LDR sensor is used to follow the sun, where the sensors is less efficient to track the sun because of the low sensitivity of LDR. We are proposing a method to track sun more effetely with the help of both LDR sensors and image processing. This type of mechanism can track sun with the help of image processing software which combines both result of sensors and processed sun image to control the solar panel. The combination of both software and hardware can control thousands of solar panels in solar power plants.</p>


2021 ◽  
Vol 57 (1) ◽  
pp. 37-44
Author(s):  
O. Drozd ◽  
L. Scherbak

This paper is dedicated to the research of solar energy issues, namely to increase the efficiency of solar panels and to compare the performance of solar panels in different configurations. The author researches and compares the performance of solar panels with and without trackers. The sun is an inexhaustible source of energy that mankind has yet to appreciate. Solar energy is the kinetic energy of radiation (mainly light) generated by thermonuclear reactions in the bowels of the sun. Solar energy is one such alternative, the neglect of which will in the near future lead to catastrophic consequences for humanity. Solar energy is a progressive method of obtaining various types of energy through solar radiation. Solar energy is one of the most promising and dynamic renewable energy sources (RES). Each year, the increase in commissioned capacity is approximately 40-50%. In the last fifteen years alone, the proportion of solar electricity in the world has exceeded the 5% mark. To increase the efficiency of solar panels, designers and engineers are developing new devices and devices, one of which is a solar tracker. A solar tracker is a device that allows you to control the movement of the sun across the sky, as well as move the solar panel to the position where the absorption of sunlight is most effective. After the conducted experiment , calculations an comparison we can see the next results. Without the solar tracker our panel generated maximum power in 2.4 Watt. After the solar tracking system integration, our panel generated almost 20 (19.8) Watt of power! After this comparison we can tell that the generated power increase in 8.25 Watts. We can also admit that the amount of generated power depends on light intensity. But solar panels are the most effective when the solar beam falls perpendicular to solar cell and solar panel is at an angle of 75 – 85 degrees


Author(s):  
Kavan Jani ◽  
Hong Zhou ◽  
Chung Leung

Solar trackers orient solar panels toward the Sun to increase solar energy harvesting. To enhance solar energy capture, solar trackers change solar panels’ orientation throughout the day to follow the Sun’s path and make solar panels normal to the solar ray. The current solar trackers make solar panels perpendicular to the solar ray because of the active motion control of the solar panels. However, they also consume considerable power since the motion of solar panels is usually generated by two motors simultaneously and continuously. The merits of the existing sensor-based dual-axis solar trackers are compromised by their motor power consumption. In this research, the Sun’s location relative to an arbitrary point on Earth is determined at any time on any day in any year. Because of the determined solar location and path, only one axis is needed for the proposed solar tracker since it does not rely on any sensor to determine the Sun’s location. The current single-axis solar trackers face challenges on the limited oscillation range of the solar panels and the potential interference between an oscillating solar panel and its corresponding ground. In this paper, a sensor-free single-axis solar tracking linkage is designed to surmount these challenges. The solar tracking motion of the designed linkage is simulated. The designed linkage is fabricated and tested. The motion of the fabricated linkage is controlled by a microcontroller to generate the desired intermittent solar tracking motion.


Author(s):  
Siti Amely Jumaat ◽  
Mohamad Nur Aiman Mohd Said ◽  
Clarence Rimong Anak Jawa

This project aims to develop dual axis solar tracker with IOT monitoring system using Arduino. Generally, solar energy is the technology to get useful energy from sunlight. Solar energy has been used in many traditional technologies over the centuries and has been widely used in the absence of other energy supplies. Its usefulness is widespread when awareness of the cost of the environment and the supply is limited by other energy sources such as fuel. The solar tracking system is the most effective technology to improve the efficiency of solar panels by tracking and following the sun's movement. With the help of this system, solar panels can improve the way of sunlight detection so that more electricity can be collected as solar panels can maintain a sunny position. Thus the project discusses the development of two-axis solar-tracking developers using Arduino Uno as main controller the system. For develops this project, four light-dependent resistors (LDRs) have been used for sunlight detection and a maximum light intensity. Two servo motors have been used to rotate the solar panel according to the sun's light source detected by the LDR. Next a WIFI ESP8266 device is used as an intermediary between device and IOT monitoring system. The IOT monitoring system is a website that functions to store data. The efficiency of this system has been tested and compared with a single axial solar tracker. As a result, the two-axis solar tracking system generates more power, voltage and current.


Author(s):  
Alex Wenda ◽  
Rendy Dwi Putra

This research optimizes the absorption of solar energy in solar panels by designing mechanical systems that can move solar panels in the direction of incoming sunlight. Light-sensitive sensors are used to track the sun. The solar tracking system is designed using two axes, namely rotation axis and the tilt axis. Both axes are driven by servo motors based on light-sensitive sensors. The system was developed using an ATmega328 microcontroller unit. The test results found that using solar tracking the amount of energy produced was greater than static solar panels. Radiation generated between solar tracking and static sun can increase by 55.2%.


2017 ◽  
Author(s):  
Indra Riyanto

This paper will discuss about the design of a portable photo voltaic electric generator capable of tracking sunlight in all directions. Such power generator is designed for disaster affected area with power outage, such as during major floods like Jakarta in 2012, or strong earthquake such as Yogyakarta in 2006 and Japan in 2011 (Tohoku) and 2016 (Kumamoto). Such occurence usually results in disruptions of public service, especially power grids. The system consists of a 10 Wp PV solar panels capable in two axes movement, which is 120° horizontal and 360° azimuth movement with ATMega8535 micro controller as the main controller. Two-axis movement is based on two types of sensors, 360° directional movement is based on the HMC5883 compass sensor. This compass sensor panel also be configured to always directs towards the sun so that if the direction of the base plate was changed, it will automatically direct the panel to the direction of the sun. While 120° vertical movement based on three pieces of LDR (Light Dependent Resistor) as sun sensors. The purpose of this system is to maximize the amount of light received by the panel so the panel power output is also maximized so it can generate emergency electrical supply for lighting and other basic needs.


2019 ◽  
Vol 3 (1) ◽  
pp. 29-35
Author(s):  
M Barkah Salim ◽  
Nurlaila Rajabiah

The sun is a source of energy that cannot be used up. Therefore, the utilization of solar energy must be a priority. With the many types of solar panels that have been developed, researchers conducted an analysis of 150 watt monocrystalline solar panels. The purpose of this study is to know the amount of current and voltage produced by solar panels in some conditions of the sky, namely cloudy, bright cloudy, and bright. The research method used was the experiment. From the data that has been obtained, it can be found that the energy produced by solar panels during cloudy ranges from 0.6-0.8 amperes, when it is cloudy, 0.9-1.9 amperes, and when bright 2.0-3.2 amperes. The amount of electrical energy that can be produced is 8%. However, if the sunny state can produce twice that Suggestions for readers are if you want to take data to make sure the solar panels are completely exposed to the sun during data collection and in the open area. Much better if the angle is adjusted in the direction of sunlight.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012024
Author(s):  
Lim Xin You ◽  
Nordiana Shariffudin ◽  
Mohd Zamri Hasan

Abstract Nowadays, solar energy’s popularity is growing consistently every year, along with the growth of amazing solar technologies, which is considered to be one of the most popular. Non-renewable energy like petrol and gasoline is being replaced with solar energy, which is renewable energy. The main objective of this project is to design and simulate a robot solar system. The robot is developed using Arduino Mega 2560 as the main brain of the system. This system is equipped with a solar tracking system to track the movement of the sun and LDR is used to detect the presence of sunlight. The solar tracker is used to get the maximum efficiency of solar energy and reduce power losses. In addition, the solar tracker can rotate from 0° - 180°, which is the best angle for the solar panel to reach the sunlight. This robot will be attached to the sprinkler system to perform the watering process. This robot is developed for use in the agriculture field to reduce the manpower and cost of the watering process. Three analyses will be conducted in this project such as solar panel analysis, Wi-Fi connectivity analysis and sprinkler system analysis. The result shows the solar panel will gain the highest intensity of the sunlight at 12.00 pm and a sunny day compared to the other time and a cloudy day. The maximum range of Wi-Fi connectivity and the water pump, time used to finish the watering process and watering area will be discussed.


Sign in / Sign up

Export Citation Format

Share Document