Heating Conservation Methods and Economy Analysis of Winter Heating in Rural Residential Buildings in Southeast China: A Case Study

2019 ◽  
Author(s):  
Rang Tu ◽  
Mengdan Liu ◽  
Lanbin Liu

Abstract In this paper, energy conservation approaches for residential buildings in rural area of southeast China are studied. There used to be no heating habits in rural buildings of southeast China, which is due to the relatively warm weather in winter. However, as the stand of living is increasing, heating in winter has become more popular in recent years. It is quite important to choose proper heating conservation materials taking both initial cost and operating cost into consideration. In this paper, a typical house in southern part of Henan Province is selected for study. It is a two-level house made of bricks, which was built in 2014. A set of radiators were installed for heating in winter. Water, which is heated by electrical heater, is used as heating medium for these radiators. As compared with heat pumps, draft sensation problem is avoided and temperature in the heating space is more uniform. However, operating fee is very high, which makes this heating method less attractive. To reduce power consumption of winter heating, heating load needs to be reduced and the efficiency of heating equipment needs to be increased. In this study, researches are carried out as following. First, a model is built in DeST, which is a software that can calculate hourly heating load and room temperature. Then, the effect of thermal preservation quality of envelops on room temperature and heating load are investigated. Six models with different envelopes are simulated. Then, heating load as well as power consumptions of electrical heaters and heat pumps among the six envelopes are compared. Lastly, economic analysis is carried out for the energy efficient retrofit case so that the payback period is calculated. The results show that heating load capacity of case F, envelope of which made of 240 bricks plus foamed plastic and hollow glass windows, can be reduced to 1/3 that of case A, envelope of which made of 240 bricks and single glass windows. Considering power consumptions of both compressors and fans, energy consumption density (divided by area) can be reduced from 21.6∼25 kWh·m−2·year−1 of case A, which has the worst heat conservation property, to 6.7∼7.7 kWh·m−2·year−1 of case F. If the building is improved from case A to case F and heat pumps are adopted, the payback period is 3.3∼3.8 years. Because of high cost of window retrofit and small influence of its heat conservation property on the reduction of heating capacity, it is recommended to just improve walls. Air tightness of window is more effective than thermal quality.

2021 ◽  
Vol 13 (6) ◽  
pp. 3198
Author(s):  
Hossein Moayedi ◽  
Amir Mosavi

The significance of accurate heating load (HL) approximation is the primary motivation of this research to distinguish the most efficient predictive model among several neural-metaheuristic models. The proposed models are formulated through synthesizing a multi-layer perceptron network (MLP) with ant lion optimization (ALO), biogeography-based optimization (BBO), the dragonfly algorithm (DA), evolutionary strategy (ES), invasive weed optimization (IWO), and league champion optimization (LCA) hybrid algorithms. Each ensemble is optimized in terms of the operating population. Accordingly, the ALO-MLP, BBO-MLP, DA-MLP, ES-MLP, IWO-MLP, and LCA-MLP presented their best performance for population sizes of 350, 400, 200, 500, 50, and 300, respectively. The comparison was carried out by implementing a ranking system. Based on the obtained overall scores (OSs), the BBO (OS = 36) featured as the most capable optimization technique, followed by ALO (OS = 27) and ES (OS = 20). Due to the efficient performance of these algorithms, the corresponding MLPs can be promising substitutes for traditional methods used for HL analysis.


2015 ◽  
Vol 16 (6) ◽  
pp. 579-589 ◽  
Author(s):  
Tsubasa Shimoji ◽  
Hayato Tahara ◽  
Hidehito Matayoshi ◽  
Atsushi Yona ◽  
Tomonobu Senjyu

Abstract From the perspective of global warming suppression and the depletion of energy resources, renewable energies, such as the solar collector (SC) and photovoltaic generation (PV), have been gaining attention in worldwide. Houses or buildings with PV and heat pumps (HPs) are recently being used in residential areas widely due to the time of use (TOU) electricity pricing scheme which is essentially inexpensive during middle-night and expensive during day-time. If fixed batteries and electric vehicles (EVs) can be introduced in the premises, the electricity cost would be even more reduced. While, if the occupants arbitrarily use these controllable loads respectively, power demand in residential buildings may fluctuate in the future. Thus, an optimal operation of controllable loads such as HPs, batteries and EV should be scheduled in the buildings in order to prevent power flow from fluctuating rapidly. This paper proposes an optimal scheduling method of controllable loads, and the purpose is not only the minimization of electricity cost for the consumers, but also suppression of fluctuation of power flow on the power supply side. Furthermore, a novel electricity pricing scheme is also suggested in this paper.


Author(s):  
Xiling Zhao ◽  
Xiaoyin Wang ◽  
Tao Sun

Distributed peak-shaving heat pump technology is to use a heat pump to adjust the heat on the secondary network in a substation, with features of low initial investment, flexible adjustment, and high operating cost. The paper takes an example for the system that uses two 9F class gas turbines (back pressure steam) as the basic heat source and a distributed heat pump in the substation as the peak-shaving heat source. The peak-shaving ratio is defined as the ratio of the designed peak-shaving heat load and the designed total heat load. The economic annual cost is taken as a goal, and the optimal peak-shaving ratio of the system is investigated. The influence of natural gas price, electricity price, and transportation distance are also analyzed. It can provide the reference for the optimized design and operation of the system.


2021 ◽  
Author(s):  
Hossein Moayedi ◽  
Amir Mosavi

The significance of heating load (HL) accurate approximation is the primary motivation of this research to distinguish the most efficient predictive model among several neural-metaheuristic models. The proposed models are through synthesizing multi-layer perceptron network (MLP) with ant lion optimization (ALO), biogeography-based optimization (BBO), dragonfly algorithm (DA), evolutionary strategy (ES), invasive weed optimization (IWO), and league champion optimization (LCA) hybrid algorithms. Each ensemble is optimized in terms of the operating population. Accordingly, the ALO-MLP, BBO-MLP, DA-MLP, ES-MLP, IWO-MLP, and LCA-MLP presented their best performance for population sizes of 350, 400, 200, 500, 50, and 300, respectively. The comparison was carried out by implementing a ranking system. Based on the obtained overall scores (OSs), the BBO (OS = 36) featured as the most capable optimization technique, followed by ALO (OS = 27) and ES (OS = 20). Due to the efficient performance of these algorithms, the corresponding MLPs can be promising substitutes for traditional methods used for HL analysis.


2000 ◽  
Vol 37 (02) ◽  
pp. 100-110
Author(s):  
Michael R. Cocklin ◽  
Michael G. Parsons ◽  
Armin W. Troesch

The United States Coast Guard, in supporting and executing its growing list of missions, employs the 110 ft WPB Coastal Patrol Board as a multipurpose platform. Recently, the internal conflicts in Haiti which resulted in the mass exodus of people required extensive use of 110 ft WPBs. These Coastal Patrol Boats are being deployed for longer periods of time with longer on-scene time than before. But with this growing list of missions and recent developments, the Coast Guard's budget has not increased. The Coast Guard has had to do more with less. In order to do this, one must look at ways of reducing the operating cost of the cutters. Analytical analysis of a 110 ft WPB Coastal Patrol Boat is used to show that retrofitting these vessels with a stern flap will lead to an effective energy enhancement with application to the entire 110 ft WPB Coastal Patrol Boat Fleet. The projected energy savings per cutter per year is over $5165. With a fleet of 49, the projected fleet savings per year is $253 085. The payback period for the installation costs would be just over one year.


2019 ◽  
Vol 282 ◽  
pp. 02003
Author(s):  
Tillman Gauer ◽  
Björn-Martin Kurzrock

The building sector is crucial to reach the goals of common climate agreements. This paper contrasts three approaches to reduce emissions from typical residential buildings in Central Europe: the instalment of electric heat pumps (eHP), a thicker insulation of the thermal envelope and the encumbrance of a carbon tax. The use of less carbon intense fuels allows major savings of GHG emissions. An insulation thickness of 30 cm leads to GHG emission savings of 8% against a thickness of just 12 cm, while total cost savings (LCC) remain negligible. The introduction of a carbon tax of up to 250 €/t-CO2-eq. does not necessarily result in a reduction of GHG emissions due to increased costs of construction. It was further found that the focus of legal building regulations on heating demand is sufficient for now but needs to be revised as carbon intensities continue to decrease. The heating then reduces its share of the GHG emissions from 85 to 55% for typical residential buildings. The paper closes with a general expression of the lifecycle costs of a building which is dependent on the factors above.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2593 ◽  
Author(s):  
Reza Khakian ◽  
Mehrdad Karimimoshaver ◽  
Farshid Aram ◽  
Soghra Zoroufchi Benis ◽  
Amir Mosavi ◽  
...  

The energy performance of buildings and energy-saving measures have been widely investigated in recent years. However, little attention has been paid to buildings located in rural areas. The aim of this study is to assess the energy performance of two-story residential buildings located in the mountainous village of Palangan in Iran and to evaluate the impact of multiple parameters, namely building orientation, window-to-wall ratio (WWR), glazing type, shading devices, and insulation, on its energy performance. To attain a nearly zero energy building design in rural areas, the building is equipped with photovoltaic modules. The proposed building design is then economically evaluated to ensure its viability. The findings indicate that an energy saving of 29% can be achieved compared to conventional buildings, and over 22 MWh of electricity can be produced on an annual basis. The payback period is assessed at 21.7 years. However, energy subsidies are projected to be eliminated in the near future, which in turn may reduce the payback period.


Science ◽  
2020 ◽  
Vol 370 (6518) ◽  
pp. 797-803 ◽  
Author(s):  
X. Moya ◽  
N. D. Mathur

Magnetically driven thermal changes in magnetocaloric materials have, for several decades, been exploited to pump heat near room temperature. By contrast, their electrocaloric and mechanocaloric counterparts have only been intensively studied and exploited for little more than a decade. These different caloric strands have recently been unified to yield a single field of research that could help combat climate change by generating better heat pumps for both cooling and heating. Here we outline the timeliness of the present activity and discuss recent advances in caloric measurements, materials, and prototypes.


Sign in / Sign up

Export Citation Format

Share Document