Experiments on Nonlinear Vibrations of a Nuclear Fuel Rod Supported by Spacer Grids in Air and Submerged in Water

Author(s):  
Marco Amabili ◽  
Prabakaran Balasubramanian ◽  
Giovanni Ferrari ◽  
Giulio M. Franchini ◽  
Francesco Giovanniello ◽  
...  

Abstract For safety reasons, the nuclear fuel assemblies of Pressurized Water Reactors (PWR) must be able to withstand external excitations ranging from large amplitude seismic motions of the reactor to flow-induced vibrations from the surrounding coolant water. A nuclear fuel assembly is composed of long slender tubes, most of them filled with uranium pellets, maintained in a square array by spacer grids. The spacer grids provide a nonlinear flexible boundary condition with friction and micro-impacts that complicates the nonlinear dynamics. In order to improve safety margins in the design of nuclear fuel assemblies, it is of great interest to understand the influence of the spacer grids, as it relates to the overall structural stiffness and damping properties. In particular, the evolution of the vibration amplitude with increasing excitation forces is still undetermined. In order to understand the nonlinear vibration response of a zirconium fuel rod filled with nuclear fuel pellets and supported by spacer grids, experiments were carried out in water and in air. They consisted of measuring the vibration response of the rod under a step-sine harmonic excitation at different force amplitude levels in the frequency neighborhood of the fundamental mode. If the excitation is large enough, the response of the rod displays nonlinear phenomena such as the shift of the resonant frequencies, multiple solutions with instabilities (jumps) and hysteresis, and one-to-one internal resonances. These experiments were carried out on zirconium tubes filled with axially unconstrained as well as axially blocked metallic pellets, which simulate the nuclear fuel. The zirconium tubes were tested both in air and immersed in water. The experimental data will be processed in the future by means of an identification procedure to extract the nonlinear stiffness and damping parameters of the system. An increase of the equivalent viscous damping with the excitation amplitude level is expected.

Author(s):  
Marco Amabili ◽  
Prabakaran Balasubramanian ◽  
Giovanni Ferrari ◽  
Stanislas Le Guisquet ◽  
Kostas Karazis ◽  
...  

In Pressurized Water Reactors (PWR), fuel assemblies are composed of fuel rods, long slender tubes filled with uranium pellets, bundled together using spacer grids. These structures are subjected to fluid-structure interactions, due to the flowing coolant surrounding the fuel assemblies inside the core, coupled with large-amplitude vibrations in case of external seismic excitation. Therefore, understanding the non-linear response of the structure and, particularly, its dissipation, is of paramount importance for the choice of safety margins. To model the nonlinear dynamic response of fuel rods, the identification of nonlinear stiffness and damping parameters is required. The case of a single fuel rod with clamped-clamped boundary conditions was investigated by applying harmonic excitation at various force levels. Different configurations were implemented testing the fuel rod in air and in still water; the effect of metal pellets simulating nuclear fuel pellets inside the rods was also recorded. Non-linear parameters were extracted from some of the experimental response curves by means of a numerical tool based on the harmonic balance method. The axisymmetric geometry of fuel rods resulted in the presence of a one-to-one internal resonance phenomenon, which has to be taken into account modifying accordingly the numerical identification tool. The internal motion of fuel pellets is a cause of friction and impacts, complicating further the linear and non-linear dynamic behavior of the system. An increase of the equivalent viscous-based modal damping with excitation amplitude is often shown during geometrically non-linear vibrations, thus confirming previous experimental findings in the literature.


Author(s):  
D. V. Paramonov ◽  
S. J. King ◽  
M. Y. Young ◽  
R. Y. Lu

Fuel assemblies are exposed to severe thermal, mechanical and radiation loads during operation. Global core and local fuel assembly flow fields typically result in fuel rod vibration. Under certain conditions, this vibration, when coupled with other factors, might result in excessive cladding fretting wear. This phenomenon is of the concern for nuclear fuel designers, especially in light of the need for higher burnup, longer cycle lengths, and operational safety margins in fuel designs. Understanding of (1) the fretting wear margins for a particular nuclear fuel design, (2) the probability of a fuel assembly exposed to a particular set of thermal, mechanical, flow and radiation conditions being at risk of excessive wear, and (3) the factors affecting fretting wear resistance, are important in order to better guide design, testing, and operational flexibility. In this paper, an integrated method to estimate fretting margin of nuclear fuel is presented, including its formulation, benchmark against experimental data and example application to in-core conditions. The major features of the method are as follows: • flow and rod vibration response are coupled through a linear structural analysis model, • flow field is determined using a sub-channel thermal-hydraulic code, • wear progression is treated as a time-dependent process, through taking into account impact of resulting rod-to-support clearance, • a possibility of a fluid-elastic instability is accounted for. Supporting data on basic wear mechanisms, flow field and fuel assembly fretting wear behavior obtained at a number of experimental facilities at Westinghouse Electric Company and Atomic Energy of Canada Limited are also presented. These facility include: • VIPER hydraulic test loop data where vibration response and wear are measured under prototypical flow conditions, and • autoclave fretting-wear machine steam employed to determine fretting-wear coefficients of fuel rod and grid-support designs.


Author(s):  
Giovanni Ferrari ◽  
Stanislas Le Guisquet ◽  
Prabakaran Balasubramanian ◽  
Marco Amabili ◽  
Brian Painter ◽  
...  

In Pressurized Water Reactors (PWR), fuel assemblies are made up of fuel rods, long slender tubes filled with uranium pellets, bundled together using spacer grids. These structures are subjected to fluid-structure interactions, due to the flowing coolant surrounding the fuel assemblies inside the core, coupled with large-amplitude vibrations in case of external seismic excitation. Therefore, understanding the nonlinear response of the structure, and, particularly, its dissipation, is of paramount importance for the choice of safety margins, in the design of fuel assemblies, to ensure their functionality and safety in the worst external condition scenarios. To model the nonlinear dynamic response of fuel rods, the identification of the nonlinear stiffness and damping parameters is required. A tool based on harmonic balance method was developed to identify these parameters from the experimentally obtained force-response curves, considering one-to-one internal resonance phenomenon present in axisymmetric structures such as cylindrical tubes and shells. To validate the tool, it was applied to the reference case of circular cylindrical shell filled with water, which revealed an increase of damping with the excitation amplitude. In the following paper, the more realistic case of a single fuel rod with clamped-clamped boundary condition was investigated by applying harmonic excitation at various force levels. The nonlinear parameters including damping were extracted from experimental results by means of the adapted tool. An increase in damping with excitation amplitude has been shown according to earlier studies.


2016 ◽  
Vol 821 ◽  
pp. 207-212
Author(s):  
Štěpán Dyk ◽  
Vladimír Zeman

The paper deals with nonlinear phenomena that occurs during vibration of nuclear fuel rod (FR). The FR is considered as a system consisting of two impact-interacting subsystems FR cladding (zircalloy tube) and fuel pellets stack placed inside FR cladding. Between both subsystems, there is a small radial clearance. The FR is bottom-end-fixed, and at eight equidistant levels, the FR cladding is supported by spacer grids (SG). Both subsystems are modelled by means of finite element method for one-dimensional Euler-Bernoulli continua. During fuel assembly (FA) motion caused by pressure pulsations of the coolant, the FR vibrates and impacts can possibly occur between FR cladding and fuel pellets stack. The paper focuses on qualitative change of vibration with change of bifurcation parameters clearance between FR cladding and fuel pellets stack and stiffness of spacer grids cells. The change of vibration quality is shown by extremes of relative radial displacements of both continua in discretization nodes and by phase trajectories. Dependence of impact motion on modal properties of both subsystems is shown.


Author(s):  
Kang Liu ◽  
Titan C. Paul ◽  
Leo A. Carrilho ◽  
Jamil A. Khan

The experimental investigations were carried out of a pressurized water nuclear reactor (PWR) with enhanced surface using different concentration (0.5 and 2.0 vol%) of ZnO/DI-water based nanofluids as a coolant. The experimental setup consisted of a flow loop with a nuclear fuel rod section that was heated by electrical current. The fuel rod surfaces were termed as two-dimensional surface roughness (square transverse ribbed surface) and three-dimensional surface roughness (diamond shaped blocks). The variation in temperature of nuclear fuel rod was measured along the length of a specified section. Heat transfer coefficient was calculated by measuring heat flux and temperature differences between surface and bulk fluid. The experimental results of nanofluids were compared with the coolant as a DI-water data. The maximum heat transfer coefficient enhancement was achieved 33% at Re = 1.15 × 105 for fuel rod with three-dimensional surface roughness using 2.0 vol% nanofluids compared to DI-water.


2019 ◽  
Vol 5 (3) ◽  
Author(s):  
Marcin Kopeć ◽  
Martina Malá

The ultrasonic (UT) measurements have a long history of utilization in the industry, also in the nuclear field. As the UT transducers are developing with the technology in their accuracy and radiation resistance, they could serve as a reliable tool for measurements of small but sensitive changes for the nuclear fuel assembly (FA) internals as the fuel rods are. The fuel rod bow is a phenomenon that may bring advanced problems as neglected or overseen. The quantification of this issue state and its probable progress may help to prevent the safety-related problems of nuclear reactors to occur—the excessive rod bow could, in the worst scenario, result in cladding disruption and then the release of actinides or even fuel particles to the coolant medium. Research Centre Rez has developed a tool, which could serve as a complementary system for standard postirradiation inspection programs for nuclear fuel assemblies. The system works in a contactless mode and reveals a 0.1 mm precision of measurements in both parallel (toward the probe) and perpendicular (sideways against the probe) directions.


2012 ◽  
Vol 706-709 ◽  
pp. 2535-2539
Author(s):  
Young Ho Lee ◽  
Hyung Kyu Kim

Recently, a dual-cooled fuel (i.e. annular fuel) which is compatible with current operating PWR plants has been proposed in order to increase both power densities and safety margins. Due to the design concept that is compatible with current PWR plants, however, when compared with a current solid nuclear fuel it shows a narrow gap between fuel rods and needs to modify spacer grid shapes and their positions. Because a flow-induced vibration by fast primary coolant is inevitable phenomenon, it is necessary to examine the fretting wear behavior between an annular fuel and designed spacer grids. In this study, fretting wear has been performed to evaluate the wear resistance of the annular fuel by using specially designed spring and dimple of spacer grids that have a cantilever type and a hemispherical shape, respectively. At the spring specimen with relatively small stiffness value, fretting wear was initiated at both end regions and then proceeded gradually to center region. Based on the test results, the fretting wear behavior of annular fuel was compared with the current solid nuclear fuel and a comparative factor of its reliability was proposed.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 494
Author(s):  
Alexander Vasiliev ◽  
Jose Herrero ◽  
Marco Pecchia ◽  
Dimitri Rochman ◽  
Hakim Ferroukhi ◽  
...  

This paper presents preliminary criticality safety assessments performed by the Paul Scherrer Institute (PSI) in cooperation with the Swiss National Cooperative for the Disposal of Radioactive Waste (Nagra) for spent nuclear fuel disposal canisters loaded with Swiss Pressurized Water Reactor (PWR) UO2 spent fuel assemblies. The burnup credit application is examined with respect to both existing concepts: taking into account actinides only and taking into account actinides plus fission products. The criticality safety calculations are integrated with uncertainty quantifications that are as detailed as possible, accounting for the uncertainties in the nuclear data used, fuel assembly and disposal canister design parameters and operating conditions, as well as the radiation-induced changes in the fuel assembly geometry. Furthermore, the most penalising axial and radial burnup profiles and the most reactive fuel loading configuration for the canisters were taken into account accordingly. The results of the study are presented with the help of loading curves showing what minimum average fuel assembly burnup is required for the given initial fuel enrichment of fresh fuel assemblies to ensure that the effective neutron multiplication factor, keff, of the canister would comply with the imposed criticality safety criterion.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Armando C. Marino

The BaCo code (“Barra Combustible”) was developed at the Atomic Energy National Commission of Argentina (CNEA) for the simulation of nuclear fuel rod behaviour under irradiation conditions. We present in this paper a brief description of the code and the strategy used for the development, improvement, enhancement, and validation of a BaCo during the last 30 years. “Extreme case analysis”, parametric (or sensitivity), probabilistic (or statistic) analysis plus the analysis of the fuel performance (full core analysis) are the tools developed in the structure of BaCo in order to improve the understanding of the burnup extension in the Atucha I NPP, and the design of advanced fuel elements as CARA and CAREM. The 3D additional tools of BaCo can enhance the understanding of the fuel rod behaviour, the fuel design, and the safety margins. The modular structure of the BaCo code and its detailed coupling of thermo-mechanical and irradiation-induced phenomena make it a powerful tool for the prediction of the influence of material properties on the fuel rod performance and integrity.


Author(s):  
Marc Ton-That ◽  
Christine Vauglin ◽  
Gilbert Trillon

AFCEN is a French Standard Development Organization which publishes codes for design, construction and in-service inspection rules for Pressurized Water Reactors. The fields covered by theses codes are mechanical components, in-service surveillance of mechanical components, electrical equipments, nuclear fuel, civil works and fire protection. AFCEN was initially founded by electric utility EDF and nuclear steam supply system manufacturer FRAMATOME. AFCEN has more than 60 institutional members, representing more than 650 experts who contribute to the development and continuous improvement of codes. The RCC-C code, which is dedicated to PWR fuel assemblies and associated core components, set forth generic requirements to be fulfilled by the suppliers and by the manufacturers for the design justifications and for the manufacturing and inspection operations of PWR fuel assemblies and rod cluster control assemblies. The RCC-C is intended to be used in the frame of contractual relations between a customer (nuclear operator) and a nuclear fuel supplier. The first edition was published in 1981. Over the years, many changes have been made to the original text but the structure hasn’t been much modified. Because of this, the text was becoming less coherent for the users and was lacking also minimal explanations. A redesign of the code was scheduled for the 2015 edition to address those problems. With the involvement of fuel vendors FRAMATOME, WESTINGHOUSE, and French nuclear operator EDF, the text was restructured and clarified. New requirements were implemented and the set of both design and manufacturing rules was strengthened to reflect fuel vendors’ practices and operator expectations. This article explains the main modifications that were implemented since the 2015 edition, and also outlines the prospects for future changes taking into account the latest regulatory requirements and evolutions of the industrial practices.


Sign in / Sign up

Export Citation Format

Share Document