Enhancement of Heat Transfer Performance in Nuclear Fuel Rod Using Nanofluids and Surface Roughness Technique

Author(s):  
Kang Liu ◽  
Titan C. Paul ◽  
Leo A. Carrilho ◽  
Jamil A. Khan

The experimental investigations were carried out of a pressurized water nuclear reactor (PWR) with enhanced surface using different concentration (0.5 and 2.0 vol%) of ZnO/DI-water based nanofluids as a coolant. The experimental setup consisted of a flow loop with a nuclear fuel rod section that was heated by electrical current. The fuel rod surfaces were termed as two-dimensional surface roughness (square transverse ribbed surface) and three-dimensional surface roughness (diamond shaped blocks). The variation in temperature of nuclear fuel rod was measured along the length of a specified section. Heat transfer coefficient was calculated by measuring heat flux and temperature differences between surface and bulk fluid. The experimental results of nanofluids were compared with the coolant as a DI-water data. The maximum heat transfer coefficient enhancement was achieved 33% at Re = 1.15 × 105 for fuel rod with three-dimensional surface roughness using 2.0 vol% nanofluids compared to DI-water.

Author(s):  
Umair Najeeb ◽  
Leo A. Carrilho ◽  
Jamil A. Khan

This paper presents convective heat transfer results for enhanced surface rod bundles for a pressurized water nuclear reactor (PWR). The experiments, to determine the single-phase heat transfer characteristics, were performed in a Single Heater Element Loop Tester (SHELT). The heater element simulates a single fuel rod for PWR. In this experimental investigation, the effects of enhancing the outer surface roughness of a simulated nuclear fuel rod bundle were studied. The outer surface of the simulated fuel rod was created with a three-dimensional (Diamond-shaped blocks) surface roughness. The simulated rod was made of Inconel 615, and was supported by Nickel 200 rods. Joule heating was supplied to the rod by passing electric current through the rod. The rod had an outside diameter of 9.5 mm and wall thickness of 1.5 mm, placed in a test-section made of 38.1 mm inner diameter aluminum pipe with a wall thickness of 6.35 mm. Tests were conducted for Reynolds numbers ranging from 105 to 106. Enhancement in heat transfer coefficient at all Re was recorded. The maximum heat transfer coefficient enhancement recorded was 86% at Re = 4.18×105.


Author(s):  
Vijay K. Garg ◽  
Ali A. Ameri

A three-dimensional Navier-Stokes code has been used to compute the heat transfer coefficient on two film-cooled turbine blades, namely the VKI rotor with six rows of cooling holes including three rows on the shower head, and the C3X vane with nine rows of holes including five rows on the shower head. Predictions of heat transfer coefficient at the blade surface using three two-equation turbulence models, specifically, Coakley’s q-ω model, Chien’s k-ε model and Wilcox’s k-ω model with Menter’s modifications, have been compared with the experimental data of Camci and Arts (1990) for the VKI rotor, and of Hylton et al. (1988) for the C3X vane along with predictions using the Baldwin-Lomax (B-L) model taken from Garg and Gaugler (1995). It is found that for the cases considered here the two-equation models predict the blade heat transfer somewhat better than the B-L model except immediately downstream of the film-cooling holes on the suction surface of the VKI rotor, and over most of the suction surface of the C3X vane. However, all two-equation models require 40% more computer core than the B-L model for solution, and while the q-ω and k-ε models need 40% more computer time than the B-L model, the k-ω model requires at least 65% more time due to slower rate of convergence. It is found that the heat transfer coefficient exhibits a strong spanwise as well as streamwise variation for both blades and all turbulence models.


Author(s):  
Vijay K. Garg

A multi-block, three-dimensional Navier-Stokes code has been used to compute heat transfer coefficient on the blade, hub and shroud for a rotating high-pressure turbine blade with 172 film-cooling holes in eight rows. Film cooling effectiveness is also computed on the adiabatic blade. Wilcox’s k-ω model is used for modeling the turbulence. Of the eight rows of holes, three are staggered on the shower-head with compound-angled holes. With so many holes on the blade it was somewhat of a challenge to get a good quality grid on and around the blade and in the tip clearance region. The final multi-block grid consists of 4784 elementary blocks which were merged into 276 super blocks. The viscous grid has over 2.2 million cells. Each hole exit, in its true oval shape, has 80 cells within it so that coolant velocity, temperature, k and ω distributions can be specified at these hole exits. It is found that for the given parameters, heat transfer coefficient on the cooled, isothermal blade is highest in the leading edge region and in the tip region. Also, the effectiveness over the cooled, adiabatic blade is the lowest in these regions. Results for an uncooled blade are also shown, providing a direct comparison with those for the cooled blade. Also, the heat transfer coefficient is much higher on the shroud as compared to that on the hub for both the cooled and the uncooled cases.


Author(s):  
V. P. Malapure ◽  
A. Bhattacharya ◽  
Sushanta K. Mitra

This paper presents a three-dimensional numerical analysis of flow and heat transfer over plate fins in a compact heat exchanger used as a radiator in the automotive industry. The aim of this study is to predict the heat transfer and pressure drop in the radiator. FLUENT 6.1 is used for simulation. Several cases are simulated in order to investigate the coolant temperature drop, heat transfer coefficient for the coolant and the air side along with the corresponding pressure drop. It is observed that the heat transfer and pressure drop fairly agree with experimental data. It is also found that the fin temperature depends on the frontal air velocity and the coolant side heat transfer coefficient is in good agreement with classical Dittus–Boelter correlation. It is also found that the specific dissipation increases with the coolant and the air flow rates. This work can further be extended to perform optimization study for radiator design.


Author(s):  
Donald L. Schmidt ◽  
David G. Bogard

A flat plate test section was used to study how high free-stream turbulence with large turbulence length scales, representative of the turbine environment, affect the film cooling adiabatic effectiveness and heat transfer coefficient for a round hole film cooling geometry. This study also examined cooling performance with combined high free-stream turbulence and a rough surface which simulated the roughness representative of an in-service turbine. The injection was from a single row of film cooling holes with injection angle of 30°. The density ratio of the injectant to the mainstream was 2.0 for the adiabatic effectiveness tests, and 1.0 for the heat transfer coefficient tests. Streamwise and lateral distributions of adiabatic effectiveness and heat transfer coefficients were obtained at locations from 2 to 90 hole diameters downstream. At small to moderate momentum flux ratios, which would normally be considered optimum blowing conditions, high free-stream turbulence dramatically decreased adiabatic effectiveness. However, at large momentum flux ratios, conditions for which the film cooling jet would normally be detached, high free-stream turbulence caused an increase in adiabatic effectiveness. The combination of high free-stream turbulence with surface roughness resulted in an increase in adiabatic effectiveness relative to the smooth wall with high free-stream turbulence. Heat transfer rates were relatively unaffected by a film cooling injection. The key result from this study was a substantial increase in the momentum flux ratios for maximum film cooling performance which occurred for high free-stream turbulence and surface roughness conditions which are more representative of actual turbine conditions.


Author(s):  
Puxuan Li ◽  
Steve J. Eckels

Accurate measurements of heat transfer and pressure drop play important roles in thermal designs in a variety of pipes and ducts. In this study, the convective heat transfer coefficient was measured with a semi-local surface average based on Newton’s Law of cooling. Flow and heat transfer data for different Reynolds numbers were collected and compared in a duct with smooth walls. Pressure drop was measured with a pressure transducer from OMEGA Engineering Inc. The experimental results were compared with numerical estimations generated in ANSYS Fluent. Fluent contains the broad physical modeling capabilities needed to model heat transfer and pressure drop in the duct. Thermal conduction and convection in the three-dimensional (3D) duct are simulated together. Special cares for selecting the viscosity models and the near-wall treatments are discussed. The goal of the paper is to find appropriate numerical models for simulating heat conduction, heat convection and pressure drop in the duct with different Reynolds numbers. The relationship between the heat transfer coefficient and Reynolds numbers is discussed. Heat flux and inlet temperature measured in the experiment are applied to the boundary conditions. The study provides the unique opportunity to verify the accuracy of numerical models on heat transfer and pressure drop in ANSYS Fluent.


Author(s):  
Desong Yang ◽  
Zhichuan Sun ◽  
Wei Li

Abstract An experimental investigation of shell-side flow condensation heat transfer was performed on advanced three-dimensional surface-enhanced tubes, including a herringbone micro-fin tube and a newly-developed 1-EHT tube. An equivalent plain tube was also tested for performance comparison. All of the test tubes have similar geometry parameters (inner diameter 11.43mm, outer diameter 12.7mm). Tests were conducted using R410A as the working fluid at a condensation saturation temperature of 45 °C, covering the mass flux range of 10–55 kg/(m2·s) with an inlet quality of 0.8 and an outlet quality of 0.1. Experimental results showed that the plain tube exhibits a better condensation heat transfer performance when compared to the enhanced tubes. Moreover, the mass flux has a significant influence on the heat transfer coefficient for shell-side condensation: the condensation heat transfer coefficient of plain tube decreases when the refrigerant mass flux becomes larger, while the heat transfer coefficient of herringbone tube shows a non-monotonic trend and the heat transfer coefficient of the 1-EHT tube gets higher with increasing refrigerant mass flux. Besides, A new prediction model based on the Cavallini’s equation was developed to predict the condensing coefficient of the three test tubes, and the mean absolute error of the improved equations is less than 4%.


Author(s):  
Shoaib Ahmed ◽  
Prashant Singh ◽  
Srinath V. Ekkad

Abstract Liquid crystal thermography and infrared thermography techniques are typically employed to measure detailed surface temperatures, where local heat transfer coefficient (HTC) values are calculated by employing suitable conduction models. One such practice, which is very popular and easy to use, is the transient liquid crystal thermography using one-dimensional semi-infinite conduction model. In these experiments, a test surface with low thermal conductivity and low thermal diffusivity (e.g. acrylic) is used where a step-change in coolant air temperature is induced and surface temperature response is recorded. An error minimization routine is then employed to guess heat transfer coefficients of each pixel, where wall temperature evolution is known through an analytical expression. The assumption that heat flow in the solid is essentially in one-dimension, often leads to errors in HTC determination and this error depends on true HTC, wall temperature evolution and HTC gradient. A representative case of array jet impingement under maximum crossflow condition has been considered here. This heat transfer enhancement concept is widely used in gas turbine leading edge and electronics cooling. Jet impingement is a popular cooling technique which results in high convective heat rates and has steep gradients in heat transfer coefficient distribution. In this paper, we have presented a procedure for solution of three-dimensional transient conduction equation using alternating direction implicit method and an error minimization routine to find accurate heat transfer coefficients at relatively lower computational cost. The HTC results obtained using 1D semi-infinite conduction model and 3D conduction model were compared and it was found that the heat transfer coefficient obtained using the 3D model was consistently higher than the conventional 1D model by 3–16%. Significant deviations, as high as 8–20% in local heat transfer at the stagnation points of the jets were observed between h1D and h3D.


Sign in / Sign up

Export Citation Format

Share Document