Simplified Aerodynamic Loading Model for Non-Production Conditions for Floating Wind Systems Design

Author(s):  
Armando Alexandre ◽  
Raffaello Antonutti ◽  
Theo Gentils ◽  
Laurent Mutricy ◽  
Pierre Weyne

Abstract Floating wind is now entering a commercial-stage, and there are a significant number of commercial projects in countries like France, Japan, UK and Portugal. A floating wind project is complex and has many interdependencies and interfaces. During all stages of the project several participants are expected to use a numerical model of the whole system and not only the part the participant has to design. Examples of this are the mooring and floater designer requiring a coupled model of the whole system including also the wind turbine, the operations team requiring a model of the system to plan towing and operations. All these stakeholders require a coupled model where the hydrodynamics, aerodynamics and structural physics of the system are captured with different levels of accuracy. In this paper, we will concentrate on a simplified model for the aerodynamic loading of the turbine in idling and standstill conditions that can be easily implemented in a simulation tool used for floater, mooring and marine operations studies. The method consists of using a subset of simulations at constant wind speed (ideally close to the wind speed required for the simulations) run on a detailed turbine model on a rigid tower and fixed foundation — normally run by the turbine designer. A proxy to the aerodynamic loads on the rotor and nacelle (RNA) is to take the horizontal yaw bearing loads. The process is then repeated for a range of nacelle yaw misalignments (for example every 15° for 360°). A look-up table with the horizontal yaw bearing load for the range of wind-rotor misalignments investigated is created. The simplified model of the aerodynamic loads on the RNA consists of a fixed blade (or wing) segment located at the hub, where aerodynamic drag and lift coefficients can be specified. Using the look-up tables created using the detailed turbine model, drag and lift coefficients are estimated as a function of the angle between the rotor and the wind direction. This representation of the aerodynamic loading on the RNA was then verified against full-field turbulent wind simulations in fixed and floating conditions using a multi-megawatt commercial turbine. The results for the parameters concerning the floater, mooring and marine operations design were monitored (e.g. tower bottom loads, offsets, pitch, mooring tensions) for extreme conditions and the errors introduced by this simplified rotor are generally lower than 4%. This illustrates that this simplified representation of the turbine can be used by the various parties of the project during the early stages of the design, particularly when knowing the loading within the RNA and on higher sections of the tower is not important.

2019 ◽  
Vol 147 (1) ◽  
pp. 221-245 ◽  
Author(s):  
Guotu Li ◽  
Milan Curcic ◽  
Mohamed Iskandarani ◽  
Shuyi S. Chen ◽  
Omar M. Knio

This study focuses on understanding the evolution of Hurricane Earl (2010) with respect to random perturbations in the storm’s initial strength, size, and asymmetry in wind distribution. We rely on the Unified Wave Interface-Coupled Model (UWIN-CM), a fully coupled atmosphere–wave–ocean system to generate a storm realization ensemble, and use polynomial chaos (PC) expansions to build surrogate models for time evolution of both the maximum wind speed and minimum sea level pressure in Earl. The resulting PC surrogate models provide statistical insights on probability distributions of model responses throughout the simulation time span. Statistical analysis of rapid intensification (RI) suggests that initial perturbations having intensified and counterclockwise-rotated winds are more likely to undergo RI. In addition, for the range of initial conditions considered RI seems mostly sensitive to azimuthally averaged maximum wind speed and asymmetry orientation, rather than storm size and asymmetry magnitude; this is consistent with global sensitivity analysis of PC surrogate models. Finally, we combine initial condition perturbations with a stochastic kinetic energy backscatter scheme (SKEBS) forcing in the UWIN-CM simulations and conclude that the storm tracks are substantially influenced by the SKEBS forcing perturbations, whereas the perturbations in initial conditions alone had only limited impact on the storm-track forecast.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 254
Author(s):  
Minhyeop Kang ◽  
Kyungnam Ko ◽  
Minyeong Kim

An atmosphere–ocean coupled model is proposed as an optimal numerical prediction method for the offshore wind resource. Meteorological prediction models are mainly used for wind speed prediction, with active studies using atmospheric models. Seawater mixing occurring at sea due to solar radiation and wind intensity can significantly change the sea surface temperature (SST), an important variable for predicting wind resources and energy production, considering its wind effect, within a short time. This study used the weather research forecasting and ocean mixed layer (WRF-OML) model, an atmosphere–ocean coupled model, to reflect time-dependent SST and sea surface fluxes. Results are compared with those of the WRF model, another atmospheric model, and verified through comparison with observation data of a meteorological mast (met-mast) at sea. At a height of 94 m, the wind speed predicted had a bias and root mean square error of 1.09 m/s and 2.88 m/s for the WRF model, and −0.07 m/s and 2.45 m/s for the WRF-OML model, respectively. Thus, the WRF-OML model has a higher reliability. In comparing to the met-mast observation data, the annual energy production (AEP) estimation based on the predicted wind speed showed an overestimation of 15.3% and underestimation of 5.9% from the WRF and WRF-OML models, respectively.


2013 ◽  
Vol 275-277 ◽  
pp. 603-606 ◽  
Author(s):  
Xing Jun Hu ◽  
Lei Liao ◽  
Jing Yu Wang ◽  
Li Min Fu

The aerodynamics characteristics of square Mira model were researched by simulation, the drag coefficient and the aerodynamic characteristics around model were achieved with analysis of velocity and pressure distribution. Based on results, the angle of rear wind window, the angle of underbody diffuser and the front transition radius were changed, the drag and lift coefficients were achieved. The conclusions provide reference for how to reduce drag coefficient of SUV


2012 ◽  
Vol 5 (5) ◽  
pp. 1161-1175 ◽  
Author(s):  
H. Kurzke ◽  
M. V. Kurgansky ◽  
K. Dethloff ◽  
D. Handorf ◽  
S. Erxleben ◽  
...  

Abstract. A quasi-geostrophic model of Southern Hemisphere's wintertime atmospheric circulation with horizontal resolution T21 has been coupled to a global ocean circulation model with a resolution of 2° × 2° and simplified physics. This simplified coupled model reproduces qualitatively some features of the first and the second EOF of atmospheric 833 hPa geopotential height in accordance with NCEP data. The variability patterns of the simplified coupled model have been compared with variability patterns simulated by four complex state-of-the-art coupled CMIP5 models. The first EOF of the simplified model is too zonal and does not reproduce the right position of the centre of action over the Pacific Ocean and its extension to the tropics. The agreement in the second EOF between the simplified and the CMIP5 models is better. The total variance of the simplified model is weaker than the observational variance and those of the CMIP5 models. The transport properties of the Southern Ocean circulation are in qualitative accord with observations. The simplified model exhibits skill in reproducing essential features of decadal and multi-decadal climate variability in the extratropical Southern Hemisphere. Notably, 800 yr long coupled model simulations reveal sea surface temperature fluctuations on the timescale of several decades in the Antarctic Circumpolar Current region.


2019 ◽  
Vol 7 (12) ◽  
pp. 422 ◽  
Author(s):  
Xiaoshuang Han ◽  
Jie Wang ◽  
Bo Zhou ◽  
Guiyong Zhang ◽  
Soon-Keat Tan

The effect of a triangular wedge upstream of a circular cylinder has been investigated, and the findings are presented herein. The triangular wedge is equilateral in plan form, and the Reynolds number based on the diameter of the main cylinder is approximately 200. Contours of vorticity clearly show that two entirely different wake patterns exist between the wedge and the main cylinder. There also exists a critical spacing ratio and side length ratio at which the wake flow pattern shifts from one within the cavity mode to one within the wake impingement mode. For a relatively small side length ratio of l w / D = 0.20 and 0.27, where the side length refers to the length of one side of the triangular wedge, the drag and lift coefficients decrease monotonically with the spacing ratio. There is a sudden jump of the drag and lift coefficients at larger side length ratios of l w / D = 0.33 and 0.40. This study shows that at a spacing ratio of L/D = 2.8 (where L is the distance between the vertex of the wedge and the center of the cylinder) and a wedge side length of l w / D = 0.40, the reduction of the amplitude of lift and mean drag coefficient on the main cylinder are 71.9% and 60.1%, respectively.


Atmosphere ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 311 ◽  
Author(s):  
Mohammad Valipour ◽  
Mohammad Ali Gholami Sefidkouhi ◽  
Mahmoud Raeini-Sarjaz ◽  
Sandra M. Guzman

In the current research, gene expression programming (GEP) was applied to model reference evapotranspiration (ETo) in 18 regions of Iran with limited meteorological data. Initially, a genetic algorithm (GA) was employed to detect the most important variables for estimating ETo among mean temperature (Tmean), maximum temperature (Tmax), minimum temperature (Tmin), relative humidity (RH), sunshine (n), and wind speed (WS). The results indicated that a coupled model containing the Tmean and WS can predict ETo accurately (RMSE = 0.3263 mm day−1) for arid, semiarid, and Mediterranean climates. Therefore, this model was adjusted using the GEP for all 18 synoptic stations. Under very humid climates, it is recommended to use a temperature-based GEP model versus wind speed-based GEP model. The optimal and lowest performance of the GEP belonged to Shahrekord (SK), RMSE = 0.0650 mm day−1, and Kerman (KE), RMSE = 0.4177 mm day−1, respectively. This research shows that the GEP is a robust tool to model ETo in semiarid and Mediterranean climates (R2 > 0.80). However, GEP is recommended to be used cautiously under very humid climates and some of arid regions (R2 < 0.50) due to its poor performance under such extreme conditions.


2016 ◽  
Vol 2016 ◽  
pp. 1-15
Author(s):  
Sium Gebremariam ◽  
Belay Demoz ◽  
Churchill Okonkwo ◽  
Ricardo K. Sakai

The performance of twenty GCMs that participated in the Coupled Model Intercomparison Phase 5 (CMIP5) is evaluated at Sterling, Virginia, by comparing model outputs with radiosonde observational dataset and reanalysis dataset. We evaluated CMIP5 models in their ability to simulate wind climatology, seasonal cycle, interannual variability, and trends at the pressure levels from 850 hPa to 30 hPa. We also addressed the question of the number of years required to detect statistically significant wind trends using radiosonde wind measurements. Our results show that CMIP5 models and reanalysis successfully reproduced the observed climatological annual mean zonal wind and wind speed vertical distribution. They also capture the observed seasonal zonal, meridional, and wind speed vertical distribution with stronger (weaker) wind during the winter (summer) season. However, there is some disagreement in the magnitude of vertical profiles among CMIP5 models, reanalysis, and radiosonde observation. Overall, the number of years to obtain statistically significant trend decreases with increasing pressure level except for upper troposphere. Although the vertical profile of interannual variability of CMIP5 models and reanalysis agree with the radiosonde observation, the wind trend is not statistically significant. This indicates that detection of trends on local scale is challenging because of small signal-to-noise ratio problems.


2007 ◽  
Vol 22 (2) ◽  
pp. 414-420 ◽  
Author(s):  
Christian Eisenhut ◽  
Florian Krug ◽  
Christian Schram ◽  
Bernd Klckl

Sign in / Sign up

Export Citation Format

Share Document