Wind-Turbine Model for System Simulations Near Cut-In Wind Speed

2007 ◽  
Vol 22 (2) ◽  
pp. 414-420 ◽  
Author(s):  
Christian Eisenhut ◽  
Florian Krug ◽  
Christian Schram ◽  
Bernd Klckl
Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2823 ◽  
Author(s):  
Hyungyu Kim ◽  
Kwansu Kim ◽  
Carlo Bottasso ◽  
Filippo Campagnolo ◽  
Insu Paek

This paper presents a modified version of the Ainslie eddy viscosity wake model and its accuracy by comparing it with selected exiting wake models and wind tunnel test results. The wind tunnel test was performed using a 1.9 m rotor diameter wind turbine model operating at a tip speed ratio similar to that of modern megawatt wind turbines. The control algorithms for blade pitch and generator torque used for below and above rated wind speed regions similar to those for multi-MW wind turbines were applied to the scaled wind turbine model. In order to characterize the influence of the wind turbine operating conditions on the wake, the wind turbine model was tested in both below and above rated wind speed regions at which the thrust coefficients of the rotor varied. The correction of the Ainslie eddy viscosity wake model was made by modifying the empirical equation of the original model using the wind tunnel test results with the Nelder-Mead simplex method for function minimization. The wake prediction accuracy of the modified wake model in terms of wind speed deficit was found to be improved by up to 6% compared to that of the original model. Comparisons with other existing wake models are also made in detail.


2020 ◽  
Author(s):  
Nawfal M. Ali ◽  
Abdul Hassan A. K ◽  
Sattar Aljabair

This paper presents an experimental and numerical simulation to investigate a hybrid vertical axis wind turbine model highly efficient which can be worked at low wind speed by studying the aerodynamic characteristics of four models of hybrid VAWTs. The hybrid WT consists of the SWT having two blades and the DWT type straight having two blades. Four models were constructed to study experimentally and numerically to choose the best model. Two models were DWT in the upper and SWT in the lower, also two models were SWT in the upper and DWT in the lower. The phase stage angle between the turbines is 0o and 90o . The experimental and numerical results showed that the performance of hybrid WT where DWT in the upper and SWT in the lower with phase stage 90o is better than in the other models, it can be started to work at a wind velocity of 2.2 m/s. At the wind velocity 3 m/s, the values of the parameters are the rotational speed (198 rpm), the CP (0.3195), the CT (0.2003), the TSR (1.6) and self-starting rotation at this value of wind velocity (3 m/s). The efficiency of extracting the wind power by hybrid WT is (51.2 %).


2021 ◽  
Vol 40 (4) ◽  
pp. 623-630
Author(s):  
M. Samuel ◽  
S.U. Muhammad ◽  
W.C. Solomon ◽  
G.C. Japheth

A wind turbine is a machine which converts the power in the wind into electricity. It operates under varying wind speeds depending on the environmental wind conditions. In this paper, we have presented the operational flow analysis of a proposed wind turbine model in Nigerian Defence Academy (NDA) Kaduna. The case study is for 5.6m/s, 7.5m/s and 9.5m/s wind speed. The model design and assembly of the components were done with the help of SolidWorks 2018 and the operational flow analysis done with ANSYS 15.0. The result showed that the flow nature of the turbine model grew from laminar flow to turbulent flow increasingly with the environmental wind speed. The flow nature remained laminar from 0.0356 to 1780 Reynolds at 5.6m/s. At 7.5m/s wind speed, from laminar 0.403 Reynolds to turbulent 4290 Reynolds and at 9.5m/s, from laminar 0.381 Reynolds to turbulent 4900 Reynolds. High turbulent flow and mass imbalance nature depicts that phenomenon like wake and vibration of the system occurred.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 946
Author(s):  
NF. Kadir ◽  
H. Mohamed ◽  
A. Manap

This paper focuses on a computational and experimental study of flat-shaped turbine blades for a small scale Vertical Axis Wind Turbine (VAWT). In the computational analysis, a 2-Dimensional (2D) wind turbine model with three flat blades was designed using Ansys Flu-ent, which is computational fluid dynamics (CFD) software. The wind speed around the blades was simulated in a range of 3 m/s to 8 m/s. Velocity and pressure distributions of the airflow around the blades were then observed. Pressures acting on the blades surface were then averaged and used to estimate the angular speed of the wind turbine model using the principles of torque and moment of inertia. A small-scale prototype was designed, fabricated and tested to validate the simulation result. Testing results show that the wind turbine prototype can rotate with an average speed of 148.8 rpm when having a 3.27 m/s wind speed. At the similar wind speed, the simulation result has estimated the angular speed to be 119 rpm. The percentage difference of the angular speed is about 20%. .  


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6604
Author(s):  
Yuan Song ◽  
Insu Paek

In this study, dynamic simulations of a wind turbine were performed to predict its dynamic performance, and the results were experimentally validated. The dynamic simulation received time-domain wind speed and direction data and predicted the power output by applying control algorithms. The target wind turbine for the simulation was a 2 MW wind turbine installed in an onshore wind farm. The wind speed and direction data for the simulation were obtained from WindSim, which is a commercial computational fluid dynamics (CFD) code for wind farm design, and measured wind speed and direction data with a mast were used for WindSim. For the simulation, the wind turbine controller was tuned to match the power curve of the target wind turbine. The dynamic simulation was performed for a period of one year, and the results were compared with the results from WindSim and the measurement. It was found from the comparison that the annual energy production (AEP) of a wind turbine can be accurately predicted using a dynamic wind turbine model with a controller that takes into account both power regulations and yaw actions with wind speed and direction data obtained from WindSim.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


Author(s):  
Salete Alves ◽  
Luiz Guilherme Vieira Meira de Souza ◽  
Edália Azevedo de Faria ◽  
Maria Thereza dos Santos Silva ◽  
Ranaildo Silva

Proceedings ◽  
2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Youssra El Qasemy ◽  
Abdelfatah Achahbar ◽  
Abdellatif Khamlichi

The stochastic behavior of wind speed is a particular characteristic of wind energy production, which affects the degradation mechanism of the turbine, resulting in stochastic charging on the wind turbine. A model stochastic is used in this study to evaluate the efficiency of wind turbine power of whatever degree given fluctuating wind turbulence data. This model is based on the Langevin equations, which characterize, by two coefficients, drift and diffusion functions. These coefficients describe the behavior of the transformation process from the input wind speed to the output data that need to be determined. For this present work, the computation of drift and diffusion functions has been carried out by using the stochastic model to assess the output variables in terms of the torque and power curves as a function of time, and it is compared by the classical method. The results show that the model stochastic can define the efficiency of wind turbine generation more precisely.


Sign in / Sign up

Export Citation Format

Share Document