A Study on the Thermal Deformation and the Mechanical Properties due to Curing Process of the Encapsulation Resin

Author(s):  
Hiroyuki Sato ◽  
Qiang Yu ◽  
Ryusuke Sone

Since the flexural rigidity of thin semiconductor package becomes much lower than normal components, the warpage of the component becomes a much more important issue to evaluate the reliability. In this study the author propose a new practical method to measure the real time curing deformation and the elastic modulus of the resin during the whole curing process. The thermal deformation of the resin under curing was measured by using the optical digital image correlation method. Next, to examine the mechanical properties of the resin, the liquid resin was poured into an aluminum frame with thin sole, and the bending rigid of the aluminum frame was measured by the three points bending test every minutes at the curing temperature of the resin. Based upon the experimented result, the warpage of a package caused of curing shrinkage was simulated.

Author(s):  
Kohta Nakahira ◽  
Hironori Tago ◽  
Fumiaki Endo ◽  
Ken Suzuki ◽  
Hideo Miura

Since the thickness of the stacked silicon chips in 3D integration has been thinned to less than 100 μm, the local thermal deformation of the chips has increased drastically because of the decrease of the flexural rigidity of the thinned chips. The clear periodic thermal deformation and thus, the thermal residual stress distribution appears in the stacked chips due to the periodic alignment of metallic bumps, and they deteriorate the reliability of products. In this paper, the dominant structural factors of the local residual stress in a silicon chip are discussed quantitatively based on the results of a three-dimensional finite element analysis and the measurement of the local residual stress in a chip using stress sensor chips. The piezoresistive strain gauges were embedded in the sensor chips. The length of each gauge was 2 μm, and an unit cell consisted of 4 gauges with different crystallographic directions. This alignment of strain gauges enables to measure the tensor component of three-dimensional stress fields separately. Test flip chip substrates were made by silicon chip on which the area-arrayed tin/copper bumps were electroplated. The width of a bump was fixed at 200 μm, and the bump pitch was varied from 400 μm to 1000 μm. The thickness of the copper layer was about 40 μm and that of tin layer was about 10 μm. This tin layer was used for the rigid joint formation by alloying with copper interconnection formed on a stress sensing chip. The measured amplitude of the residual stress increased from about 30 MPa to 250 MPa depending on the combination of materials such as bump, underfill, and interconnections. It was confirmed that both the material constant of underfill and the alignment structure of fine bumps are the dominant factors of the local deformation and stress of a silicon chip mounted on area-arrayed metallic bumps. It was also confirmed experimentally that both the hound’s-tooth alignment between a TSV (Through Silicon Via) and a bump and control of mechanical properties of electroplated copper thin films used for the TSV and bump is indispensable in order to minimize the packaging-induced stress in the three-dimensionally mounted chips. This test chip is very effective for evaluating the packaging-process induced stress in 3D stacked chips quantitatively.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 258 ◽  
Author(s):  
Che Nor Aiza Jaafar ◽  
Muhammad Asyraf Muhammad Rizal ◽  
Ismail Zainol

The mechanical performance of silica modified epoxy at various concentration of sodium hydroxide for surface treatment of multi-axial kenaf has been analyzed. Epoxy resin with amine hardener was modified with silica powder at 20 phr and toughened by treated kenaf fiber that immerses in various concentrations of sodium hydroxide (NaOH) ranging from 0% to 9% of weight. The composite was analyzed through differential scanning calorimetry (DSC) to ensure complete curing process. The mechanical properties of the composites were analyzed through flexural test, Charpy impact test and DSC to ensure the complete curing process. DSC analysis results show epoxy sample was completely cured at above 73°C that verifies the curing temperature for preparation for the composite. Hence, 3% NaOH treated composite exhibits the best mechanical properties, with 10.6 kJ/m2 of impact strength, 54.1 MPa of flexural strength and 3.5 GPa of flexural modulus. It is due to the improvement of fiber-matrix compatibility. Analysis by SEM also revealed that a cleaner surface of kenaf fiber treated at 3% NaOH shown cleaner surface, thus, in turn, improve surface interaction between fiber and matrix of the composite. The composites produced in this work has high potential to be used in automotive and domestics appliances.


2015 ◽  
Vol 12 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Alireza Karimi ◽  
Reza Razaghi ◽  
Mahdi Navidbakhsh ◽  
Toshihiro Sera ◽  
Susumu Kudo

2007 ◽  
Vol 129 (6) ◽  
pp. 913-918 ◽  
Author(s):  
Tao Cheng ◽  
Rong Z. Gan

Measurement on mechanical properties of the stapedial tendon in human middle ear has not been reported in the literature. In this paper, we used the material testing system to conduct uniaxial tensile, stress relaxation, and failure tests on stapedial tendon specimens harvested from human temporal bones. The digital image correlation method was employed to assess the boundary effect on experimental data. The stress-strain relationship of the tendon obtained from experiments was analyzed using the hyperelastic Ogden model. The results presented include (1) the constitutive equation of the tendon for stretch ratio of 1–1.4 or stress range of 0–1.45MPa, (2) the mean ultimate stress and stretch ratio of the tendon at 4.04MPa and 1.65, respectively, and (3) the hysteresis and normalized stress relaxation function of the tendon. The data reported in this paper contribute to ear mechanics, especially for theoretical analysis of human ear function.


Sign in / Sign up

Export Citation Format

Share Document