Effect of Fin Interruptions on Natural Convection Heat Transfer From a Rectangular Interrupted Single-Wall

Author(s):  
Golnoosh Mostafavi ◽  
Mehran Ahmadi ◽  
Majid Bahrami

Steady-state external natural convective heat transfer from a single-wall vertically-mounted rectangular interrupted fin arrays is investigated. A systematic numerical, experimental, and analytical study is conducted on the effect of adding interruptions to a single vertical plate, on natural convective heat transfer. COMSOL Multiphysics software is used in order to develop a two-dimensional numerical model for investigation of fin interruption effects. To perform an experimental study and to verify the analytical and numerical results, a custom-designed testbed was developed. Results show that adding interruptions to a vertical single fin enhances the thermal performance of it and reduces the weight of the heatsink, which in turn, can lead to lower manufacturing costs. A compact relationship for the Nusselt number based on geometrical parameters for interrupted fins is presented using a blending technique for two asymptotes of interruption length.

Author(s):  
Kuang Ding ◽  
Hongwu Zhu ◽  
Jinya Zhang ◽  
Xuan Luo ◽  
Junyao Zhu ◽  
...  

This study aims to investigate the convection heat transfer of a horizontal subsea Xmas tree assembly at a high spatial resolution. Such study is important for increasing the structural reliability design and flow assurance level of subsea Xmas tree. Computational fluid dynamics (steady Reynolds-averaged Navier-Stokes) is adopted to evaluate the forced convective heat transfer of the subsea Xmas tree assembly. The temperature, the convection heat loss and the convective heat transfer coefficient (CHTC) at the surfaces of the subsea Xmas tree assembly are numerically obtained with low-Reynolds number modeling (LRNM). The numerical results show that the outer surface temperatures of the subsea tree are close to that of the ambient cold sea water with the exception of the pipeline. The components along the internal production tubes are typical “hot spots,” which have high CHTHs and cause a great deal of heat loss. Under the designed water depth, the effects of installation orientation and sea water velocity on convective heat transfer are investigated. The overall average CHTCs and the local CHTC distribution of the subsea Xmas tree assembly are depended on the installation orientation. Meanwhile, with the increase of the sea water velocity, the growth rates of the CHTCs for individual components show great difference. Ultimately, for selected installation orientation, the CHTC-sea water velocity correlation is derived by using a power-law CHTC-Uin correlation.


2016 ◽  
Vol 10 (8) ◽  
pp. 12
Author(s):  
Hussein J. Akeiber ◽  
Mazlan A. Wahid ◽  
Hasanen M. Hussen ◽  
Abdulrahman Th. Mohammad ◽  
Bashar Mudhaffar Abdullah ◽  
...  

Accurate and efficient modeling of convective heat transfer coefficient (CHTC) by considering the detailed room geometry and heat flux density in building is demanding for economy, environmental amiability, and user satisfaction. We report the three-dimensional finite-volume numerical simulation of internal room flow field characteristics with heated walls. Two different room geometries are chosen to determine the CHTC and temperature distribution. The conservation equations (elliptic partial differential) for the incompressible fluid flows are numerically solved using iterative method with no-slip boundary conditions to compute velocity components, pressure, temperature, turbulent kinetic energy, and dissipation rate. A line-by-line solution technique combined with a tri-diagonal matrix algorithm (TDMA) is used. The temperature field is simulated for various combinations of air-change per hour and geometrical parameters. The values of HTCs are found to enhance with increasing wall temperatures.


1997 ◽  
Vol 119 (2) ◽  
pp. 348-356 ◽  
Author(s):  
J. L. Hoke ◽  
A. M. Clausing ◽  
T. D. Swofford

An experimental investigation of the air-side convective heat transfer from wire-on-tube heat exchangers is described. The study is motivated by the desire to predict the performance, in a forced flow, of the steel wire-on-tube condensers used in most refrigerators. Previous investigations of wire-on-tube heat exchangers in a forced flow have not been reported in the literature. The many geometrical parameters (wire diameter, tube diameter, wire pitch, tube pitch, etc.), the complex conductive paths in the heat exchanger, and the importance of buoyant forces in a portion of the velocity regime of interest make the study a formidable one. A key to the successful correlation of the experimental results is a definition of the convective heat transfer coefficient, hw, that accounts for the temperature gradients in the wires as well as the vast difference in the two key characteristic lengths—the tube and wire diameters. Although this definition results in the need to solve a transcendental equation in order to obtain hw from the experimental data, the use of the resulting empirical correlation is straightforward. The complex influence of the mixed convection regime on the heat transfer from wire-on-tube heat exchangers is shown, as well as the effects of air velocity and the angle of attack. The study covers a velocity range of 0 to 2 m/s (the Reynolds number based on wire diameter extends to 200) and angles of attack varying from 0 deg (horizontal coils) to ±90 deg. Heat transfer data from seven different wire-on-tube heat exchangers are correlated so that 95 percent of the data below a Richardson number of 0.004, based on the wire diameter, lie within ±16.7 percent of the proposed correlation.


Author(s):  
Yantao Li ◽  
Yulong Ji ◽  
Katsuya Fukuda ◽  
Qiusheng Liu

Abstract This paper presents an experimental investigation of the forced convective heat transfer of FC-72 in vertical tubes at various velocities, inlet temperatures, and tube sizes. Exponentially escalating heat inputs were supplied to the small tubes with inner diameters of 1, 1.8, and 2.8 mm and effective heated lengths between 30.1 and 50.2 mm. The exponential periods of heat input range from 6.4 to 15.5 s. The experimental data suggest that the convective heat transfer coefficients increase with an increase in flow velocity and µ/µw (refers to the viscosity evaluated at the bulk liquid temperature over the liquid viscosity estimated at the tube inner surface temperature). When tube diameter and the ratio of effective heated length to inner diameter decrease, the convective heat transfer coefficients increase as well. The experimental data were nondimensionalized to explore the effect of Reynolds number (Re) on forced convection heat transfer coefficient. It was found that the Nusselt numbers (Nu) are influenced by the Re for d = 2.8 mm in the same pattern as the conventional correlations. However, the dependences of Nu on Re for d = 1 and 1.8 mm show different trends. It means that the conventional heat transfer correlations are inadequate to predict the forced convective heat transfer in minichannels. The experimental data for tubes with diameters of 1, 1.8, and 2.8 mm were well correlated separately. And, the data agree with the proposed correlations within ±15%.


Author(s):  
Ribhu Bhatia ◽  
Sambit Supriya Dash ◽  
Vinayak Malhotra

Abstract Systematic experimentation was carried out on forced convection heat transfer apparatus under varying non-linear flow conditions to understand the energy transfer as heat, with the purpose of enhancing performance of numerous engineering applications. Plate orientations, types of enclosures (solid, meshed, perforated), flow velocity variations etc. are taken as governing parameters to effect convective heat transfer phenomenon which is perceived as deviations in value of heat transfer coefficient. RV zonal system is utilized to simplify the fundamental understanding of heat transfer coefficient variation with surface orientation under varying flow field. The objectives of this work are as follows: 1) To establish relative effectiveness of forced convective heat transfer under varying flow field. 2) To investigate the implications of varying shapes and sizes of perforations on confined forced convective heat transfer. To understand the controlling mechanism and role of key controlling parameters.


Author(s):  
Yantao Li ◽  
Yulong Ji ◽  
Katsuya Fukuda ◽  
Qiusheng Liu ◽  
Hongbin Ma

Abstract In this paper, the forced convective heat transfer of FC-72 was experimentally investigated for various of parameters like velocity, inlet temperature, tube size, and exponential period of heat generation rate. Circular tubes with different inner diameters (1, 1.8 and 2.8 mm) and heated lengths (30–50 mm) were used in this study. The experiment data suggest that the single-phase heat transfer coefficient increases with increasing flow velocity as well as decreasing tube diameter and ratio of heated length to inner diameter. The experiment data were nondimensionalized to study the effect of Reynolds number (Red) on forced convection heat transfer. The results indicate that the relation between Nusselt numbers (Nud) and Red for d = 2.8 mm show the same trend as the conventional correlations. However, the Nud for d = 1 and 1. 8 mm depend on Red in a different manner. The conventional heat transfer correlations are not adequate for prediction of forced convective heat transfer in mini channels. The heat transfer correlations for FC-72 in vertical small tubes with diameters of 1, 1.8 and 2.8 mm were developed separately based on the experiment data. The differences between experimental and predicted Nud are within ±15%.


1975 ◽  
Vol 97 (4) ◽  
pp. 516-520 ◽  
Author(s):  
J. K. Hagge ◽  
G. H. Junkhan

An experimental investigation was conducted into augmentation of forced convection heat transfer in air by mechanical removal of the boundary layer. A rotating blade element passing in close proximity to a flat plate convective surface was found to increase the rate of convective heat transfer by up to eleven times in certain situations. The blade element effectively scrapes away the boundary layer, thus reducing the resistance to heat flow. Parameters investigated include scraping frequency, scraper clearance, and type of boundary layer. Increased coefficients were found for higher scraping frequencies. Significant augmentation was obtained with clearance as large as 0.15 in. (0.0038 m) between the moving blade element and the convective surface. The technique appears most useful for laminar and transitional boundary layers, although some improvement was obtained for the turbulent boundary layers investigated. The simple surface renewal theory developed for scraped surface augmentation in liquids was found to approximately predict the coefficients obtained. A new relation is proposed which gives a better prediction and includes the effect of scraper clearance.


Author(s):  
Abderrahmane Baïri

Purpose – Nusselt-Rayleigh-Fourier type correlations are proposed to quantify the temporal evolution of convective heat transfer occurring within air-filled hemispherical enclosures whose disk, initially at ambient temperature, is suddenly maintained at a higher temperature. The temperature difference imposed between this hot wall and the isothermal cold dome involves Rayleigh number varying between 104 and 2.55×1012. Depending on the application, the disk can be inclined with respect to the horizontal plane by an angle varying between 0° (horizontal disk) and 90° (vertical disk) in steps of 15°. The paper aims to discuss these issues. Design/methodology/approach – The results are obtained by means of a numerical approach based on the finite volume method. The proposed correlations linked to the steady state Nusselt-Rayleigh internships recently published, concerning the same inclination angle and Rayleigh ranges. Findings – The statistical analysis of a large number of calculations leads to reliable results covering laminar, transitional and turbulent natural convection heat transfer zones. Practical implications – The proposed relationships can be applied in several engineering fields such as nuclear technology, solar energy, security and safety electronics, building, domotics or aeronautics. Originality/value – The new relationships proposed in this paper provide important information on the evolution of convective heat transfer during the transient regime.


Sign in / Sign up

Export Citation Format

Share Document