Assessing the Performance of Advanced Cooling Techniques on Thermal Management of Next-Generation Power Electronics

Author(s):  
Palash V. Acharya ◽  
Vaibhav Bahadur ◽  
Robert Hebner ◽  
Abdelhamid Ouroua ◽  
Shannon Strank

Abstract Rapid miniaturization alongwith increasing heat loads in power electronics devices like insulated-gate bipolar transistors (IGBTs) have necessitated the need for advanced thermal management technologies in the packaging of these devices. This study quantifies the benefits of key advanced thermal management solutions for packaging of power electronics packages. Thermal resistance network modeling is used to estimate the maximum heat flux that can be dissipated by an IGBT package, while maintaining the junction temperature below 125 °C and 200 °C for silicon and silicon carbide (wide bandgap material) devices, respectively. While the model is completely analytical, it does address important complexities associated with heat flow in packages via the use of a sub-model to account for thermal spreading. The advanced cooling technologies evaluated in this study include the use of high thermal conductivity polymer heat sinks, double-sided heat sinking of packages, liquid cooling (single and two-phase), jet impingement and spray cooling. Additionally, combinations of these cooling technologies are evaluated as well. The heat dissipation achievable from these technologies is compared with that from an air cooled copper heat sink (baseline). The results of this study provide insights and a starting point for selecting thermal management technologies (or combinations) based on the heat dissipation requirements of power electronics packages.

2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Peng Wang ◽  
Patrick McCluskey ◽  
Avram Bar-Cohen

Recent trends including rapid increases in the power ratings and continued miniaturization of semiconductor devices have pushed the heat dissipation of power electronics well beyond the range of conventional thermal management solutions, making control of device temperature a critical issue in the thermal packaging of power electronics. Although evaporative cooling is capable of removing very high heat fluxes, two-phase cold plates have received little attention for cooling power electronics modules. In this work, device-level analytical modeling and system-level thermal simulation are used to examine and compare single-phase and two-phase cold plates for a specified inverter module, consisting of 12 pairs of silicon insulated gate bipolar transistor (IGBT) devices and diodes. For the conditions studied, an R134a-cooled, two-phase cold plate is found to substantially reduce the maximum IGBT temperature and spatial temperature variation, as well as reduce the pumping power and flow rate, in comparison to a conventional single-phase water-cooled cold plate. These results suggest that two-phase cold plates can be used to substantially improve the performance, reliability, and conversion efficiency of power electronics systems.


1998 ◽  
Vol 4 (S2) ◽  
pp. 778-779
Author(s):  
E. S. K. Menon ◽  
M. Saunders ◽  
I. Dutta

Progress towards the large scale integration of active devices within electronics packages has imposed stringent heat dissipation requirements necessitating the development of innovative materials solutions. One possibility being considered is the use of chemically vapor deposited diamond (CVDD) thin films as heat sinks. However, there are technological challenges which must be overcome before these materials become commercially viable. For example, the CVDD substrate must be metallized to provide interconnections between the various devices in the package. Conventional metallizations, such as Au, Cu or Al, display poor adhesion to the diamond causing problems associated with the reliability and stability of metallized diamond packages. A novel solution has been proposed involving the consecutive deposition of a thin layer of Cr and an electrically insulating layer of alumina on the diamond substrate such that the thermal conductivity of the treated substrate is not degraded significantly.


Author(s):  
Ahmed Eltaweel ◽  
Abdulla Baobeid ◽  
Ibrahim Hassan

Non-uniform heat fluxes are commonly observed in thermo-electronic devices that require distinct thermal management strategies for effective heat dissipation and robust performance. The limited research available on non-uniform heat fluxes focus mostly on microchannel heat sinks while the fundamental component, i.e. a single microchannel, has received restricted attention. In this work, an experimental setup for the analysis of variable axial heat flux is used to study the heat transfer in a single microchannel with fully developed flow under the effect of different heat flux profiles. Initially a hot spot at different locations, with a uniform background heat flux, is studied at different Reynolds numbers while varying the maximum heat fluxes in order to compute the heat transfer in relation to its dependent variables. Measurements of temperature, pressure, and flow rates at a different locations and magnitudes of hot spot heat fluxes are presented, followed by a detailed analysis of heat transfer characteristics of a single microchannel under non-uniform heating. Results showed that upstream hotspots have lower tube temperatures compared to downstream ones with equal amounts of heat fluxes. This finding can be of importance in enhancing microchannel heat sinks effectiveness in reducing maximum wall temperatures for the same amount of heat released, by redistributing spatially fluxes in a descending profile.


2012 ◽  
Vol 463-464 ◽  
pp. 1332-1340 ◽  
Author(s):  
Lei Wu ◽  
Xiao Yun Xiong ◽  
De Xing Wang

In this study, the junction temperature (Tj) and thermal resistance (Rth) of five high-power multi-chip COB (chip-on-board) LED packages with different chip spacings were compared. The actual Tjwas measured by an IR camera and compared with the simulation results from a computational fluid dynamics (CFD) software. In addition, the effects of heat slugs with different thermal conductivity, heat sinks of various thicknesses, chip size, and forced convection cooling on the Tjand Rthof high-powered LED components were investigated. The experimental results show that smaller chip spacing resulted in higher Tjand Rth. The heat dissipation performance can be improved by using a heat slug with a high thermal conductivity; and increasing the thickness of the heat sink, or employing forced convection cooling.


Author(s):  
Ankit Kalani ◽  
Satish G. Kandlikar

Two-phase cooling is considered an attractive option for electronics cooling due to its ability to dissipate large quantities of heat. In recent years, pool boiling has shown tremendous ability in high heat dissipation applications. Researchers have used various fluid medium for pool boiling including water, alcohol, refrigerants, nanofluids and binary mixture. In the current work, binary mixture of water with ethanol was chosen as the working fluid. Plain copper chip was used as the boiling surface. Effect of various concentrations of binary mixture was investigated. A maximum heat flux of 1720 kW/m2 at a wall superheat of 28°C was recorded for 15% ethanol in water. It showed a 1.5 fold increase in CHF over pure water.


Sign in / Sign up

Export Citation Format

Share Document