Process-Consistency in Additive Printed Multilayer Substrates With Offset-Vias Using Aerosol Jet Technology

Author(s):  
Pradeep Lall ◽  
Kartik Goyal ◽  
Scott Miller

Abstract The transition of additive printed electronics into high-volume production requires process consistency to allow quality control of the manufactured product. Process recipes are needed for multilayer substrates with z-axis interconnects in order to enable complex systems. In this paper, process recipes have been developed through fundamental studies of the interactions between the process parameters and the mechanical-electrical performance achieved for multilayer substrates. The study reported in this paper focuses on printed vias also known as donut vias. Aerosol jet process parameters studied include carrier mass flow rate, sheath mass flow rate, exhaust mass flow rate, print speed, number of passes, sintering time and temperature, uv-intensity for uv-cure, and standoff height. The electrical performance has been quantified through the measurements of resistance. The mechanical performance has been quantified through measurement of shear load-to-failure. The effect of sequential build-up on the mechanical-electrical properties vs process parameters have been quantified for up tp 8-layers designs. The performance of 5-layer and 8-layer additively printed substrate designs and effect of multiple vias has been compared to assess process consistency.

2019 ◽  
Vol 895 ◽  
pp. 301-306
Author(s):  
Keshav Kashyap ◽  
S. Srinivas

This study evaluates the effect of process parameters on depth of penetration and surface roughness in abrasive waterjet (AWJ) cutting of copper. Full factorial experiments are carried out on trapezoidal blocks for each of the three abrasive particle sizes used. Experimental parameters - abrasive mass flow rate, water jet pressure and traverse speed are varied at three levels. Main effects and contributions of process parameters to depth of penetration and surface roughness is calculated. From the data, it is observed that, high abrasive mass flow rate, high water jet pressure and low traverse speed resulted in higher depth of penetration and a high abrasive mass flow rate, high water jet pressure and low traverse speed resulted in lesser Ra value. Using experimental data a statistical model for predicting depth of penetration & surface roughness is developed. Error between experimental and statistical values are compared to validate the statistical model. The maximum DOP of 49.32mm was observed at AMFR=405.4 g/min, P=300 MPa, TS=60 mm/min, MS=60 Mesh and minimum DOP of 4.27mm was observed at AMFR=200 g/min, P=100 MPa, TS=90 mm/min, MS=80 Mesh.


Author(s):  
Saprizal Hadisaputra ◽  
Muhammad Zohri ◽  
Bahtiar Bahtiar ◽  
Ahmad Fudholi

The converted Solar energy as electrical and thermal energy was named photovoltaic thermal (PVT). The aim of this study is to the analysis of different length and depth channel effect of photovoltaic thermal with ∇-groove collector by a mathematical model. The matrix inversion was used to analyze the energy balance equation. Simulation results were conducted below the solar intensity of 800 W/m2 and mass flow rate between 0.0069 kg/s and 0.0491 kg/s. Electrical and thermal efficiency was done to assess the effect of different length and channel depth of PVT system with ∇-groove collector. The effect of different length and depth of ∇-groove collector for electrical and thermal performance is caused by changed mass flow rate. The effect Increasing of the mass flow rate of collector increased the thermal and electrical performance of the ∇-groove collector.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1362
Author(s):  
Jennifer Milaor Llanto ◽  
Ana Vafadar ◽  
Muhammad Aamir ◽  
Majid Tolouei-Rad

Abrasive waterjet machining is applied in various industries for contour cutting of heat-sensitive and difficult-to-cut materials like austenitic stainless steel 304L, with the goal of ensuring high surface integrity and efficiency. In alignment with this manufacturing aspiration, experimental analysis and optimization were carried out on abrasive waterjet machining of austenitic stainless steel 304L with the objectives of minimizing surface roughness and maximizing material removal rate. In this machining process, process parameters are critical factors influencing contour cutting performance. Accordingly, Taguchi’s S/N ratio method has been used in this study for the optimization of process parameters. Further in this work, the impacts of input parameters are investigated, including waterjet pressure, abrasive mass flow rate, traverse speed and material thickness on material removal rate and surface roughness. The study reveals that an increasing level of waterjet pressure and abrasive mass flow rate achieved better surface integrity and higher material removal values. The average S/N ratio results indicate an optimum value of waterjet pressure at 300 MPa and abrasive mass flow rate of 500 g/min achieved minimum surface roughness and maximum material removal rate. It was also found that an optimized value of a traverse speed at 90 mm/min generates the lowest surface roughness and 150 mm/min produces the highest rate of material removed. Moreover, analysis of variance in the study showed that material thickness was the most influencing parameter on surface roughness and material removal rate, with a percentage contribution ranging 90.72–97.74% and 65.55–78.17%, respectively.


2017 ◽  
Vol 51 (24) ◽  
pp. 3373-3390 ◽  
Author(s):  
Ajit Dhanawade ◽  
Shailendra Kumar

The present article focuses on mechanism of delamination and kerf geometry in abrasive water jet machining of carbon epoxy composite. In the present study, four process parameters of abrasive water jet machining namely hydraulic pressure, traverse rate, stand-off distance, and abrasive mass flow rate are considered. The experiments are performed on the basis of response surface methodology as a statistical design of experiment approach. Delamination in machined samples is observed by using scanning electron microscope. Analysis of variance is performed in order to investigate the influence of process parameters on delamination, kerf taper ratio, and kerf top width. It is found that delamination decreases with increase in pressure and abrasive mass flow rate and decrease in stand-off distance and traverse rate. Kerf taper ratio decreases with increase in pressure and decrease in traverse rate and stand-off distance. Kerf top width decreases with decrease in stand-off distance and increase in traverse rate. Based on analysis, mathematical models are developed to predict the maximum delamination length, kerf taper ratio, and kerf top width. Further, a multi-response optimization is performed on the basis of desirability function to minimize delamination, kerf taper ratio, and kerf top width.


Author(s):  
V.N. Petrov ◽  
◽  
V.F. Sopin ◽  
L.A. Akhmetzyanova ◽  
Ya.S. Petrova ◽  
...  

Author(s):  
Roberto Bruno Bossio ◽  
Vincenzo Naso ◽  
Marian Cichy ◽  
Boleslaw Pleszewski
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document