The Prediction and Enhancement of UOE-DSAW Collapse Resistance for Deepwater Linepipe

Author(s):  
Mark Fryer ◽  
Peter Tait ◽  
Stelios Kyriakides ◽  
Chris Timms ◽  
Duane DeGeer

With the increasing development of oil and gas reserves in water depths greater than 1500 m, linepipe used for deepwater and ultra-deepwater applications will require enhanced resistance to hydrostatic collapse. To support this need, Corus Tubes has been investigating methods by which increases in UOE linepipe collapse strength can be achieved. In particular, it has been theorised that modifications to the UOE manufacturing process can provide the necessary collapse strength enhancements. Pipe production trials were conducted focusing on the effect of processing parameters during UOE linepipe production, and in addition low temperature heat treatment was used to assess its effect. Full-scale collapse tests were then performed on the resulting linepipe specimens to validate the increase in collapse strength. The results of this work have demonstrated the beneficial effect of a modified UOE manufacturing approach on linepipe collapse resistance. This paper summarizes the work performed, quantifies the increase in collapse strength, and compares the test results to collapse equations found in offshore pipeline standards. It is also demonstrated that the UOE fabrication factor of 0.85 in the DNV offshore pipeline code (DNV OS-F101) may be considered to be over conservative, when linepipe is manufactured using the modified approach summarized herein.

Author(s):  
Rodrigo De Lucca ◽  
Rafael F. Solano ◽  
Doug Swanek ◽  
Fabio B. de Azevedo ◽  
Fábio Arroyo ◽  
...  

Energy consumption outlook shows that the demand for Oil and Gas is increasing worldwide and since most of the undemanding reserves are already being explored, new reserves means longer distances from the shore and increasing water depths, of up to 3,000 meters. Collapse resistance has become a key factor in the design of pipelines for ultra-deepwater applications. UOE process is commonly used for manufacturing pipelines of large diameter and the cold work involved in this forming process modifies the mechanical properties of the pipes. This paper presents the effect of thermal treatment on final material properties, proving the validity of enhancing collapse for different D/t, as allowed by DNV-OS-F101 αFab, and extending what has been shown as valid on previous studies. In this work, the inputs for the processing strategies are presented, along with coupon compression testing and full scale testing, in order to qualify the selected route as compliant with producing pipes with αFab equal to 1, for usual D/t combinations. An analysis of the predicted collapse pressure compared to the real collapse pressure of the pipes is also presented. The extension of the qualification process achieved successful results and allows the use of a fabrication factor equal to 1 in ultra-deepwater offshore pipeline projects. This enables the reduction of wall thickness, generating reductions in material and offshore installation costs and also potentially enhancing the feasibility of many challenging offshore projects.


2018 ◽  
Vol 2 (1) ◽  
pp. 33
Author(s):  
Wardoyo Wardoyo ◽  
Sumpena Sumpena

<em>The purpose of this research </em><em>is to determine the effect of heat treatment hardening of Al</em><em>Mg</em><em>Si</em><em>-</em><em>Fe12% casting aluminium alloys</em><em> </em><em>on wear. The tests were carried out on specimens of raw materials and heat-treated specimens with variations of temperature used were 550 <sup>o</sup>C, 575 <sup>o</sup>C, 600 <sup>o</sup>C, and 625 <sup>o</sup>C, and used 15 minutes of holding time in each heat treatment, then quenching in SAE 20 oil. The method used for wear-tested was high speed ogoshi universal testing machine wear.</em><em> The result had shown on </em><em>raw material a specific wear rate was 2.256102E-07 mm<sup>2</sup>/kg. Test results on the </em><em>specimens</em><em> that have</em><em> received heat treatment hardening temperature 550 <sup>o</sup>C increased the wear value decreased to 1.7471E-07 mm<sup>2</sup>/kg. In materials with temperature heat treatment, 575 <sup>o</sup>C causes wear values were increased when compared with raw material, </em><em>respectively, 2,83739E-07 mm<sup>2</sup>/kg. In materials with temperature heat treatment 600 <sup>o</sup>C also causes wear values were increased when compared with raw material, respectively, 2,65105E-07 mm<sup>2</sup>/kg. Test results on the test material that ha</em><em>s</em><em> received heat treatment temperature 625 <sup>o</sup>C increased the wear value decreased to 2.16777E-07 mm<sup>2</sup>/kg.</em>


Author(s):  
Chung-kook Lee ◽  
Yolande Berta ◽  
Robert F. Speyer

Barium hexaferrite (BaFe12O19) is a promising candidate for high density magnetic recording media due to its superior magnetic properties. For particulate recording media, nano-sized single crystalline powders with a narrow size distribution are a primary application requirement. The glass-crystallization method is preferred because of the controllability of crystallization kinetics, hence, particle size and size distribution. A disadvantage of this method is the need to melt raw materials at high temperatures with non-reactive crucibles, e.g. platinum. However, in this work, we have shown that crystal growth of barium hexaferrite occurred during low temperature heat treatment of raw batches.


Alloy Digest ◽  
1965 ◽  
Vol 14 (1) ◽  

Abstract Jessair is a manganese, chromium, molybdenum alloy steel combining the deep harding characteristics of air-hardening steels with the simplicity of low temperature heat treatment possible in many oil-hardening steels. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and bend strength as well as fracture toughness and fatigue. It also includes information on forming, heat treating, machining, and joining. Filing Code: TS-157. Producer or source: Jessop Steel Company.


Alloy Digest ◽  
1965 ◽  
Vol 14 (3) ◽  

Abstract F.V.520B is an improved martensitic stainless steel which has good corrosion resistance, weldability, and capacity of being hardened by low temperature heat treatment. It is recommended for steam turbine blades and aircraft components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-166. Producer or source: Firth-Vickers Stainless Steels Ltd.


Vsyo o myase ◽  
2020 ◽  
pp. 22-24
Author(s):  
Nasonova V.V. ◽  
◽  
Tunieva E.K. ◽  
Motovilina A.A. ◽  
Mileenkova E.V. ◽  
...  

The paper presents the results of the study on the effect of low-temperature heat treatment on color characteristics and protein oxidation products depending on the method, temperature and duration of heat treatment of culinary products from turkey meat. At present, the use of low-temperature processing in the production technology for meat products with improved organoleptic indices is a topical direction.


Author(s):  
Hidenori Shitamoto ◽  
Nobuyuki Hisamune

There are several methods currently being used to install offshore oil and gas pipelines. The reel-lay process is fast and one of the most effective offshore pipeline installation methods for seamless, ERW, and UOE line pipes with outside diameters of 18 inches or less. In the case of the reel-laying method, line pipes are subjected to plastic deformation multiplication during reel-laying. It is thus important to understand the change of the mechanical properties of line pipes before and after reel-laying. Therefore, full-scale reeling (FSR) simulations and small-scale reeling (SSR) simulations are applied as evaluation tests for reel-laying. In this study, FSR simulations were performed to investigate the effect of cyclic deformation on the mechanical properties of weldable 13Cr seamless line pipes. Furthermore, SSR simulations were performed to compare the results obtained by FSR simulations.


Sign in / Sign up

Export Citation Format

Share Document