Bioremediation of Soil Contaminated by Crude Oil in Daqing, China

Author(s):  
Yiling Zhang ◽  
Dehong Kong ◽  
Sheng Sun ◽  
Zhiguo Luo ◽  
Peng Luo

Bioremediation of soil contaminated by pipeline spills in the Daquin region of China is presented in this paper. The objective of the study was to determine the nutrient ratio required for the bioremediation of soil contaminated by Daqing crude oil. Several experiments were conducted using different proportions of C:N:P:K to choose the optimum ratio of nutrients to be applied for bioremediation, C is supplied from the crude oil in the contaminated soil. The moisture content, porosity, PH and temperature of the contaminated soil were adjusted for optimum conditions. The experimental bioremediation technology was conducted in a treatment unit that was 0.5 m in length, 0.7 m in width, and 1.5 m in height. The results showed that the degradation rate of Total Petroleum Hydrocarbons (TPH) increased with increased concentrations of crude oil in the soil. At the beginning of the bioremediation experiments, the degradation rate of THP is high, but it gradually slowed over the course of the experiment. The degradation rate of TPH averaged 98% over 8 months.

2001 ◽  
Vol 43 (2) ◽  
pp. 291-295 ◽  
Author(s):  
J. Vouillamoz ◽  
M. W. Milke

The effect of compost on phytoremediation of diesel-contaminated soils was investigated using 130 small (200 g) containers in two screening tests. The experiments were conducted in a controlled environment using ryegrass from seed. Containers were destructively sampled at various times and analyzed for plant mass and total petroleum hydrocarbons. The results indicate that the presence of diesel reduces grass growth, and that compost helps reduced the impact of diesel on grass growth. The addition of compost helps increase diesel loss from the soils both with and without grass, though the addition of grass leads to lower diesel levels compared with controls. A second set of experiments indicates that the compost helps in phytoremediation of diesel-contaminated soil independent of the dilution effect that compost addition has. The results indicate that the compost addition allowed diesel loss down to 200 mg TPH/kg even though the compost would be expected to hold the diesel more tightly in the soil/compost mixture. The simplicity of the screening tests led to difficulties in controlling moisture content and germination rates. The conclusion of the research is that the tilling of compost into soils combined with grass seeding appears to be a valuable option for treating petroleum-contaminated soils.


2021 ◽  
Author(s):  
Godwin James Udo ◽  
Nnanake-Abasi O. Offiong ◽  
Alfreda Nwadinigwe ◽  
Clement O. Obadimu ◽  
Aniedi E. Nyong ◽  
...  

2017 ◽  
Author(s):  
Jorge Antonio Lopes ◽  
Graciane Silva ◽  
Marcia Marques ◽  
Sérgio Machado Correa

Bioremediation of aged and newly clayey soil contaminated with crude oil was investigated in lab-scale using two different strategies (biostimulation-BIOS and bioaugmentation-BIOA), also simulating two different technological options: dynamic biopile (M) and static biopile with forced aeration (B). The inoculum used for bioaugmentation was obtained from the aged contaminated soil. The treatments were performed in triplicates and included one control (original contaminated soil-CONT). The treatments were monitored with soil sampling obtained after 0, 24, 59 and 121 days when the populations of total heterotrophic microorganism (THM), total fungi (TF), and oil-degrading microorganism (ODM) as well as the extracted total petroleum hydrocarbons (TPH) and the 16 polycyclic aromatic hydrocarbons (PAH) prioritized by U.S. EPA were analyzed by gas chromatography. It was observed a trend for reduction of the microbial population density from 0 to 121 days. As expected, the population densities of THM and ODM were much higher in bio-augmented soils in both technologies (BIOA-m and BIOA-b) at day 0. However, after 121 days, the superiority in THM density was observed only in the bioreactor simulating static biopile with forced aeration (BIOA-b). Regarding treatment efficiency, the static biopile with forced aeration performed better in the removal of TPH when associated with bioaugmentation (BIOA-b), being equivalent to the microcosms (simulating dynamic biopile) for the other treatments (CONT and BIOS). For PAH, the superiority of the bioreactor was less conspicuous but observed in both bioremediation strategies (biostimulation BIOS-b and bioaugmentation BIOA-b). The results suggested that regarding TPH, the strategy of bioaugmentation was superior to biostimulation and that the bioreactor (simulating static biopile with forced aeration) reached better contaminant reductions than the microcosm (simulating dynamic biopile). Clayey soil contaminated with crude oil poses big challenges for the bioremediation, due to the texture of the soil favouring adsorption of organic contaminants and due to the complex crude oil composition. The bioprocesses are slow, cleavage of larger molecules are likely to generate smaller hydrocarbons and therefore the elimination of the toxicity is very slow, which may require longer periods and auxiliary tools, such as surfactants.


2021 ◽  
Author(s):  
Dalel Daâssi ◽  
Fatimah Qabil Almaghribi

Abstract The aim of this work was to isolate indigenous PAH degrading-fungi from petroleum contaminated soil and exogenous ligninolytic strains from decaying-wood, with the ability to secrete diverse enzyme activity. A total of ten ligninolytic fungal isolates and two native strains, has been successfully isolated, screened and identified. The phylogenetic analysis revealed that the indigenous fungi (KBR1 and KB8) belong to the genus Aspergillus niger and tubingensis. While the ligninolytic exogenous PAH-degrading strains namely KBR1-1, KB4, KB2 and LB3 were affiliated to different genera like Syncephalastrum sp, Paecilomyces formosus, Fusarium chlamydosporum, and Coniochaeta sp., respectively. Basis on the taxonomic analysis, enzymatic activities and the hydrocarbons removal rates, single fungal culture employing the strain LB3, KB4, KBR1 and the mixed culture (LB3+KB4) were selected to be used in soil microcosms treatments. The Total petroleum hydrocarbons (TPH), fungal growth rates, BOD5/COD ratios and GC-MS analysis, were determined in all soil microcosmos treatments (SMT) and compared with those of the control (SMU). After 60 days of culture incubation, the highest rate of TPH degradation was recorded in SMT[KB4] by approximately 92±2.35% followed by SMT[KBR1] then SMT[LB3+KB4] with 86.66±1.83% and 85.14±2.21%, respectively.


2019 ◽  
Vol 17 (3) ◽  
Author(s):  
E J GUTIÉRREZ-ALCÁNTARA ◽  
D TIRADO-TORRES ◽  
G VÁZQUEZ-RODRÍGUEZ ◽  
E DELGADILLO-RUÍZ ◽  
M SALAZAR-HERNÁNDEZ ◽  
...  

Author(s):  
N. Tyschenko ◽  
D. Ivasenko ◽  
А. Kosov ◽  
D. Rybkin ◽  
Е. Lukjanova ◽  
...  

Novel strains of hydrocarbons degrading microorganisms were isolated from oil contaminated soil and bottom sediments and identified. Isolates oxidize components of crude oil in presence of oxygen and can be used as a part of commercial biological products for oil destruction.


2005 ◽  
Vol 48 (spe) ◽  
pp. 249-255 ◽  
Author(s):  
Sandro José Baptista ◽  
Magali Christe Cammarota ◽  
Denize Dias de Carvalho Freire

The aim of the present work was to evaluate the biodegradation of petroleum hydrocarbons in clay soil a 45-days experiment. The experiment was conducted using an aerobic fixed bed reactor, containing 300g of contaminated soil at room temperature with an air rate of 6 L/h. The growth medium was supplemented with 2.5% (w/w) (NH4)2SO4 and 0.035% (w/w) KH2PO4. Biodegradation of the crude oil in the contaminated clay soil was monitored by measuring CO2 production and removal of organic matter (OM), oil and grease (OandG), and total petroleum hydrocarbons (TPH), measured before and after the 45-days experiment, together with total heterotrophic and hydrocarbon-degrading bacterial count. The best removals of OM (50%), OandG (37%) and TPH (45%) were obtained in the bioreactors in which the highest CO2 production was achieved.


Sign in / Sign up

Export Citation Format

Share Document