Integrity of Old Pipelines Buried in Petroleum Products Storage Terminals

Author(s):  
Mauro Y. Fujikawa ◽  
Eduardo O. de A. Silva ◽  
Reinaldo A. das Neves ◽  
Derci Donizeti Massitelli ◽  
Newton Orlando Abraha˜o ◽  
...  

This work aims to present the results obtained from the experience gained through the accomplishment of the inspection with the ultrasonic umbilical pig in a non-piggable internal pipe buried in the Transpetro Storage Terminal in Sa˜o Caetano do Sul, in Sa˜o Paulo, Brazil. The pipeline considered in this work is a line for marine fuel oil, which, because of its high viscosity, must be heated in order to flow. The oil is heated in the terminal by the steam produced in boilers. The heat transfer may occur in a heat exchanger or inside the storage tank, and the pipeline referred is thermally isolated. So that the line could be inspected, it was divided in two parts, one upstream of the pumps (suction), which is a 12-inch line, and the other downstream of the same pumps (discharge), which is a 14-inch line. This work has been developed by Transpetro’s Pipeline Operation, Maintenance, Inspection and Safety Departments together, since the planning phase, passing by the job execution and getting to the conclusion. To begin with, the operational liberation of the line had to be agreed between all the departments involved with the PIG inspection, which were mentioned before, and Transpetro’s Logistics Department. Once the PIG passage was scheduled, an initial cleaning had to be performed by the Operation Activity. Since this line is non-piggable, the installation of adaptations was necessary. After that, the passage of cleaning PIGs was possible, and the line sections could be enabled. The next step was the inspection of the pipeline with umbilical ultrasonic PIGs. After the passage of these PIGs, the adaptations had to be removed and the pipeline had to be conditioned for the operational return. After this part of the inspection was finished, the verification of the results issued was necessary. Once the theoretical results were available, ditches were opened for correlation inspection and temporary repairs in the most critical points for the operation were applied. The last part of the work consists in an analysis study of technical and economical viability for rehabilitation of the lines.

Author(s):  
Xiangbo Kong ◽  
Yuan Fu ◽  
Jianyu Zhang ◽  
Huiju Lu ◽  
Naxiu Wang

A FLiNaK high temperature test loop, which was designed to support the Thorium Molten Salt Reactor (TMSR) program, was constructed in 2012 and is the largest engineering-scale fluoride loop in the world. The loop is built of Hastelloy C276 and is capable of operating at the flow rate up to 25m3/h and at the temperature up to 650°C. It consists of an overhung impeller sump-type centrifugal pump, an electric heater, a heat exchanger, a freeze valve and a mechanical one, a storage tank, etc. Salt purification was conducted in batch mode before it was transferred to and then stored in the storage tank. The facility was upgraded in three ways last year, with aims of testing a 30kW electric heater and supporting the heat transfer experiment in heat exchanger. Firstly, an original 100kW electric heater was replaced with a 335kW one to compensate the overlarge heat loss in the radiator. A pressure transmitter was subsequently installed in the inlet pipe of this updated heater. Finally, a new 30kW electric heater was installed between the pump and radiator, the purpose of which was to verify the core’s convective heat transfer behavior of a simulator design of TMSR. Immediately after these above works, shakedown test of the loop was carried out step by step. At first the storage tank was gradually preheated to 500°C so as to melt the frozen salt. Afterwards, in order to make the operation of transferring salt from storage tank to loop achievable, the loop system was also preheated to a relatively higher temperature 530°C. Since the nickel-base alloy can be severely corroded by the FLiNaK salt once the moisture and oxygen concentration is high, vacuum pumping and argon purging of the entire system were alternatively performed throughout the preheating process, with the effect of controlling them to be lower than 100ppm. Once the salt was transferred into the loop, the pump was immediately put into service. At the very beginning of operation process, it was found that flow rate in the main piping could not be precisely measured by the ultrasonic flow meter. Ten days later, the pump’s dry running gas seal was out of order. As a result, the loop had to be closed down to resolve these issues.


Author(s):  
S. K. S. Boetcher ◽  
F. A. Kulacki ◽  
Jane H. Davidson

Optimizing heat transfer during the charge and discharge of thermal stores is crucial for high performance of solar thermal systems for domestic and commercial applications. This study models a sensible water storage tank for which charge and discharge are accomplished using a heat exchanger immersed in the storage fluid. The objective is to investigate the use of a baffle and shroud as a means to improve convective heat transfer and thermal stratification. The immersed heat exchanger is modeled as a two-dimensional isothermal cylinder which is situated near the top of a storage tank with adiabatic walls. Transient numerical simulations of the discharge process are obtained for 105 < RaD < 107. An adiabatic shroud and baffle whose geometry is parametrically varied is placed around and below the cylinder. Transient Nusselt numbers are calculated for different baffle-shroud geometries and Rayleigh numbers. Results indicate that a long baffle with a high shroud height is optimal.


Author(s):  
Jong K. Lee ◽  
Seung D. Lee ◽  
Kune Y. Suh

During a severe accident, the reactor core may melt and be relocated to the lower plenum to form a hemispherical pool. If there is no effective cooling mechanism, the core debris may heat up and the molten pool run into natural convection. Natural convection heat transfer was examined in SIGMA RP (Simulant Internal Gravitated Material Apparatus Rectangular Pool). The SIGMA RP apparatus comprises a rectangular test section, heat exchanger, cartridge heaters, cooling jackets, thermocouples and a data acquisition system. The internal heater heating method was used to simulate uniform heat source which is related to the modified Rayleigh number Ra′. The test procedure started with water, the working fluid, filling in the test section. There were two boundary conditions: one dealt with both walls being cooled isothermally, while the other had to with only the upper wall being cooled isothermally. The heat exchanger was utilized to maintain the isothermal boundary condition. Four side walls were surrounded by the insulating material to minimize heat loss. Tests were carried out at 1011 &lt; Ra′ &lt; 1013. The SIGMA RP tests with an appropriate cartridge heater arrangement showed excellent uniform heat generation in the pool. The steady state was defined such that the temperature fluctuation stayed within ±0.2 K over a time period of 5,000 s. The conductive heat transfer was dominant below the critical Rayleigh number Ra′c, whereas the convective heat transfer picked up above Ra′c. In the top and bottom boundary cooling condition, the upward Nusselt number Nuup was greater than the downward Nusselt number Nudn. In particular, the discrepancy between Nuup and Nudn widened with Ra′. The Nuup to Nudn ratio was varied from 7.75 to 16.77 given 1.45×1012 &lt; Ra′ &lt; 9.59×1013. On the other hand, Nuup was increased in absence of downward heat transfer for the case of top cooling. The current rectangular pool testing will be extended to include circular and spherical pools.


1964 ◽  
Vol 86 (3) ◽  
pp. 334-340 ◽  
Author(s):  
M. M. Chen ◽  
W. Rohsenow

The paper presents a combined experimental and theoretical study on the heat, mass, and momentum transfer in a frosted heat exchanger tube. Experimental evidence suggests that the behavior of the frosted tube is largely determined by the surface roughness of the frost layer. Based on simple stability considerations and the well-known rough pipe results of Nikuradse and von Karman, a theory is presented which predicts the frost surface roughness as functions of RePrkkf and the frost thickness. The theoretical results are shown to be in qualitative agreement with observed results. Heat-transfer and pressure drop calculations based on the predicted roughness are also found to be in fair agreement with observed results.


Author(s):  
Sassan Etemad ◽  
Bengt Sunde´n

The turbulent flow and the heat transfer in a unitary cell of a cross corrugated plate pattern heat exchanger has been studied using Chen’s high-Re k-ε model, Suga’s low-Re k-ε model, the RSM and the V2F model at a Reynolds number of 4930. The ability of these models in predicting the mean Nusselt number and Fanning friction factor has been investigated. The V2F model predicted higher heat transfer and friction factors than the other models. It was observed that the upper and lower flow in the unitary cell interact throw a shear process. This in turn initiates a complex secondary flow pattern which promotes the heat transfer. The V2F model predicted the strongest shear process. This may explain the fact that it also predicted the highest values of heat transfer and friction factor compared to the other models. The shear flow also caused high levels of turbulent kinetic energy in the centre of the unitary cell. The observed secondary motion is believed to be an efficient means of increasing the heat transfer coefficient with limited pressure drop penalty. It is also demonstrated that despite the geometrical complexity, high quality computational grids can be created and thereby details of the flow and heat transfer phenomena can be studied. The RSM appeared to be instable and gave results similar to Chen’s k-ε model. Therefore, its use is not motivated for such applications.


2021 ◽  
pp. 300-300
Author(s):  
Sobhanadri Anantha ◽  
Senthilkumar Gnanamani ◽  
Vivekanandan Mahendran ◽  
Venkatesh Rathinavelu ◽  
Ramkumar Rajagopal ◽  
...  

The inclusion of baffles in a double pipe heat exchanger is becoming increasingly important as it improves the heat exchanger's performance. CFD analysis is used in this paper to investigate the performance of double pipe heat exchangers with and without helical baffles on both shell tube sides. The 3D Computation Fluid Dynamics (CFD) model was created in Solid Works, and the FloEFD software was used to analyze the conjugate Heat Transfer between the heat exchanger's tube and shell sides. Heat transfer characteristic like Outlet temperature of shell and tube are investigated along with pressure drop on shell and tube side. Based on CFD results of Double Pipe Heat exchanger with helical baffle on both shell side and tube side (Type 4) gives the better results than the other type of heat exchangers with an increased pressure drop than the others, results reveals that type 4 outlet temperature of shell side is 8% higher and on tube side it is 5.5% higher, also pressure drop on shell side is 12% higher and on tube side it is 42% higher than the other types.


Author(s):  
James G. Meholick

One of the most basic duties in the processing of fruit juices and drinks involves the economical, sanitary heating or cooling of products. These may be liquids or fluids of high viscosity or those containing particulate matter or pulp. The most commonly used forms of heat transfer equipment for these duties are the plate and tubular heat exchangers. Each is available in many different configurations and designs. Each is tailored to perform a variety of process duties while reducing fuel, water, and power consumption in keeping with the urgent need for better management of natural resources. Paper published with permission.


Sign in / Sign up

Export Citation Format

Share Document