Experimental Validation of a Finite-Element Model to Simulate an Impact on Pipeline due to Vehicles or Heavy Object Fall

Author(s):  
Charles Fernandez ◽  
Maxime Bertin ◽  
Philippe Cardin

This paper deals in a first part with an experimental program aimed at studying mechanical impacts on pipelines. Tests have been performed at CRIGEN-ENGIE-LAB, the Center of Research and Innovation for Gas and New Energies of ENGIE (previously GDF SUEZ) on pipes under pressure and pipes without internal pressure with an impact tool whom length is greater than the external diameter of the pipes and a tool similar to an excavator tooth. In a first part, the paper presents the tests which show a very good behavior of the pipelines. None have failed for the large impact-tool, which is equivalent in terms of impact energy to a 1000 kg-vehicle impacting a pipeline at ∼32 km.h−1 (∼20 miles.h−1). In a second part, the paper deals with existing analytical solutions: the Det Norske Veritas model for dent assessment and the EPRG model for mechanical damage assessment due to an excavator tooth. Comparisons with the CRIGEN tests show that the DNV equation is not always conservative in terms of predicted rupture energy and that the third-party damage EPRG model predicts correctly the rupture for the tooth-like tool but does not seem adapted for the longer tool. In a third part, an explicit finite-element model (performed with the commercial software Abaqus) has then been used to simulate numerically the tests. Different material behavior laws have been tested: a classical elastic-plastic law and a law with a time-dependence (Cowper-Symonds). The comparison between the final geometry of the impacted pipeline and the computational solution is quite satisfactory. A numerical strain criterion is extrapolated and then applied to some real configurations. This paper presents the tests, the analytical comparisons, the computational models and some applications to the fall of heavy long objects as well as vehicle impact on pipelines.

2010 ◽  
Vol 132 (8) ◽  
Author(s):  
Jason P. Halloran ◽  
Chadd W. Clary ◽  
Lorin P. Maletsky ◽  
Mark Taylor ◽  
Anthony J. Petrella ◽  
...  

Evaluating total knee replacement kinematics and contact pressure distributions is an important element of preclinical assessment of implant designs. Although physical testing is essential in the evaluation process, validated computational models can augment these experiments and efficiently evaluate perturbations of the design or surgical variables. The objective of the present study was to perform an initial kinematic verification of a dynamic finite element model of the Kansas knee simulator by comparing predicted tibio- and patellofemoral kinematics with experimental measurements during force-controlled gait simulation. A current semiconstrained, cruciate-retaining, fixed-bearing implant mounted in aluminum fixtures was utilized. An explicit finite element model of the simulator was developed from measured physical properties of the machine, and loading conditions were created from the measured experimental feedback data. The explicit finite element model allows both rigid body and fully deformable solutions to be chosen based on the application of interest. Six degrees-of-freedom kinematics were compared for both tibio- and patellofemoral joints during gait loading, with an average root mean square (rms) translational error of 1.1 mm and rotational rms error of 1.3 deg. Model sensitivity to interface friction and damping present in the experimental joints was also evaluated and served as a secondary goal of this paper. Modifying the metal-polyethylene coefficient of friction from 0.1 to 0.01 varied the patellar flexion-extension and tibiofemoral anterior-posterior predictions by 7 deg and 2 mm, respectively, while other kinematic outputs were largely insensitive.


2013 ◽  
Vol 554-557 ◽  
pp. 484-491 ◽  
Author(s):  
Alexander S. Petrov ◽  
James A. Sherwood ◽  
Konstantine A. Fetfatsidis ◽  
Cynthia J. Mitchell

A hybrid finite element discrete mesoscopic approach is used to model the forming of composite parts using a unidirectional glass prepreg non-crimp fabric (NCF). The tensile behavior of the fabric is represented using 1-D beam elements, and the shearing behavior is captured using 2-D shell elements into an ABAQUS/Explicit finite element model via a user-defined material subroutine. The forming of a hemisphere is simulated using a finite element model of the fabric, and the results are compared to a thermostamped part as a demonstration of the capabilities of the used methodology. Forming simulations using a double-dome geometry, which has been used in an international benchmarking program, were then performed with the validated finite element model to explore the ability of the unidirectional fabric to accommodate the presence of interlaminate cabling.


Author(s):  
Hauke Herrnring ◽  
Søren Ehlers

Abstract This paper presents a finite element model for the simulation of ice-structure interaction problems, which are dominated by crushing. The failure mode of ice depends significantly on the strain rate. At low strain rates the ice behaves ductile, whereas at high strain rates ice reacts in brittle mode. This paper focuses on the brittle mode, which is the dominating mode for ship-ice interactions. A multitude of numerical approaches for the simulation of ice can be found in the literature. Nevertheless, the literature approaches do not seem suitable for the simulation of continuous ice-structure interaction processes at low and high confinement ratios in brittle mode. Therefore, this paper seeks to simulate the ice-structure interaction with the finite element method (FEM). The objective of the here introduced Mohr-Coulomb Nodal Split (MCNS) model is to represent the essential material behavior of ice in an efficient formulation. To preserve mass and energy as much as possible, the node splitting technique is applied, instead of the frequently used element erosion technique. The intention of the presented model is not to reproduce individual cracks with high accuracy, because this is not possible with a reasonable element size, due to the large number of crack fronts forming during the ice-structure interaction process. To validate the findings of the model, the simulated maximum ice forces and contact pressures are compared with ice-extrusion and double pendulum tests. During validation, the MCNS model shows a very good agreement with these experimental values.


2015 ◽  
Vol 29 (22) ◽  
pp. 1550119
Author(s):  
Shin-Hyung Song ◽  
Woo Chun Choi

Mechanical micromachining is a powerful and effective way for manufacturing small sized machine parts. Even though the micromachining process is similar to the traditional machining, the material behavior during the process is much different. In particular, many researchers report that the basic mechanics of the work material is affected by microstructures and their crystallographic orientations. For example, crystallographic orientations of the work material have significant influence on force response, chip formation and surface finish. In order to thoroughly understand the effect of crystallographic orientations on the micromachining process, finite-element model (FEM) simulating orthogonal cutting process of single crystallographic material was presented. For modeling the work material, rate sensitive single crystal plasticity of face-centered cubic (FCC) crystal was implemented. For the chip formation during the simulation, element deletion technique was used. The simulation model is developed using ABAQUS/explicit with user material subroutine via user material subroutine (VUMAT). Simulations showed that variation of the specific cutting energy at different crystallographic orientations of work material shows significant anisotropy. The developed FEM model can be a useful prediction tool of micromachining of crystalline materials.


1990 ◽  
Vol 112 (3) ◽  
pp. 287-291 ◽  
Author(s):  
F. A. Kolkailah ◽  
A. J. McPhate

In this paper, results from an elastic-plastic finite-element model incorporating the Bodner-Partom model of nonlinear time-dependent material behavior are presented. The parameters in the constitutive model are computed from a leastsquare fit to experimental data obtained from uniaxial stress-strain and creep tests at 650°C. The finite element model of a double-notched specimen is employed to determine the value of the elastic-plastic strain and is compared to experimental data. The constitutive model parameters evaluated in this paper are found to be in good agreement with those obtained by the other investigators. However, the parameters determined by the numerical technique tend to give response that agree with the data better than do graphically determined parameters previously used. The calculated elastic-plastic strain from the model agreed well with the experimental strain.


2004 ◽  
Vol 72 (4) ◽  
pp. 599-608 ◽  
Author(s):  
Segen Farid Estefen ◽  
Theodoro Antoun Netto ◽  
Ilson Paranhos Pasqualino

Design requirements for pipelines regarding both ultimate strength and flow assurance in ultra deepwater scenarios motivated the development of a new sandwich pipe which is able to combine high structural and thermal insulation properties. In this concept, the annulus is filled with low cost materials with adequate thermal insulation properties and good mechanical resistance. The aim of this research work is to perform small-scale laboratorial tests and to develop a finite element model to evaluate the structural performance of such sandwich pipes with two different options of core material. After calibrated in view of the experimental results, a three-dimensional finite element model incorporating nonlinear geometric and material behavior is employed to perform strength analyses of sandwich pipes under combined external pressure and longitudinal bending. Ultimate strength envelopes for sandwich pipes are compared with those generated for single-wall steel pipes with equivalent collapse pressures. The study shows that sandwich pipe systems with either cement or polypropylene cores are feasible options for ultra deepwater applications.


Author(s):  
Dongxu Li ◽  
Brian Uy ◽  
Farhad Aslani ◽  
Chao Hou

Spiral welded stainless tubes are produced by helical welding of a continuous strip of stainless steel. Recently, concrete-filled spiral welded stainless steel tubes have found increasing application in the construction industry due to their ease of fabrication and aesthetic appeal. However, an in-depth understanding of the behaviour of this type of structure is still needed due to the lack of proper design guidance and insufficient experimental verification. In this paper, the mechanical performance of concrete-filled spiral welded stainless steel tubes will be numerically investigated with a commercial finite element software package, through which an experimental program can be designed properly. Specifically, the proposed finite element models take into account the effects of material and geometric nonlinearities. Moreover, the initial imperfections of stainless steel tubes and the form of helical welding will be appropriately included. Enhancement of the understanding of the analysis results can be achieved by extending results through a series of parametric studies based on the developed finite element model. Thus, the effects of various design parameters will be further evaluated by using the developed finite element model. Furthermore, for the purposes of wide application of such types of structure, the accuracy of the behaviour prediction in terms of ultimate strength based on current design codes will be studied. The authors herein compared the load capacity between the finite element analysis results and the existing codes of practice.


Sign in / Sign up

Export Citation Format

Share Document