Molecular Dynamics Simulation of Adsorption Process of Anti-Corrosion Additives on Copper and Oxidized Copper Surfaces

Author(s):  
Kohei Nishikawa ◽  
Hirotoshi Akiyama ◽  
Kazuhiro Yagishita ◽  
Hitoshi Washizu

Newly formed metal surface is often unstable and becomes stable when it is terminated with another molecule, but the original color and properties may be diminished when it is covered with oxygen or gasses in atmosphere. Anti-copper-corrosion additives adsorb onto the surface of copper and it is used in order to prevent this phenomena and save copper’s color and properties [1]. There are few molecule findings about anti-copper-corrosion additive, however, and the mechanism of adsorbtion onto the surface of cupper and prevent corrosion. Recently, real-time instrumentation technique using Otto-SPR was proposed, and it is becoming possible to observe how additives adsorb onto the surface in molecular level [2].

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5660
Author(s):  
Fengfeng Gao

Biofouling is one of the most difficult problems in the field of marine engineering. In this work, molecular dynamics simulation was used to study the adsorption process of mussel protein on the surface of two antifouling films—hydrophilic film and hydrophobic film—trying to reveal the mechanism of protein adsorption and the antifouling mechanism of materials at the molecular level. The simulated conclusion is helpful to design and find new antifouling coatings for the experiments in the future.


RSC Advances ◽  
2016 ◽  
Vol 6 (89) ◽  
pp. 85994-86005 ◽  
Author(s):  
Xiuying Zhao ◽  
Geng Zhang ◽  
Feng Lu ◽  
Liqun Zhang ◽  
Sizhu Wu

The damping properties of AO-70/NBR composites get a noteworthy increase with the introduction of AO-70—max tan δincreased by 66.9%.


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3008
Author(s):  
Yaoshuang Cheng ◽  
Shiling Yuan

Heavy oil in crude oil flooding is extremely difficult to extract due to its high viscosity and poor fluidity. In this paper, molecular dynamics simulation was used to study the emulsification behavior of sodium dodecyl sulfonate (SDSn) micelles on heavy oil droplets composed of asphaltenes (ASP) at the molecular level. Some analyzed techniques were used including root mean square displacement, hydrophile-hydrophobic area of an oil droplet, potential of mean force, and the number of hydrogen bonds between oil droplet and water phase. The simulated results showed that the asphaltene with carboxylate groups significantly enhances the hydration layer on the surface of oil droplets, and SDSn molecules can change the strength of the hydration layer around the surface of the oil droplets. The water bridge structure between both polar heads of the surfactant was commonly formed around the hydration layer of the emulsified oil droplet. During the emulsification of heavy oil, the ratio of hydrophilic hydrophobic surface area around an oil droplet is essential. Molecular dynamics method can be considered as a helpful tool for experimental techniques at the molecular level.


Sign in / Sign up

Export Citation Format

Share Document