Proposed Qualification Test Procedure to Identify Prestressed Concrete Ties That May Be Susceptible to End-Splitting Cracks

Author(s):  
Adrijana Savic ◽  
B. Terry Beck ◽  
Robert J. Peterman

Abstract Prestressed concrete ties could develop end-splitting cracks along tendons due to lateral bursting stresses. The lateral bursting stresses can form due to Hoyer effect (change in diameter of the prestressing tendons due to Poisson’s ratio, the jacking force in the tendons, geometrical features, and indent characteristics of the prestressing tendons. End-splitting cracks can occur immediately after de-tensioning procedure in some cases, but they also can be developed during the first weeks after de-tensioning procedure due to sustained lateral stresses exerted by the prestressing tendons. The ability of concrete to resist these bursting stresses without cracking is primarily the function of the thickness of concrete cover, the type of concrete mixture used and the maximum compressive strength of the concrete. The test purpose was to identify tie designs that may be susceptible to end-splitting cracks. The Qualification test will be great tool to identify tie designs that have ability to form end-splitting cracks. The System Qualification Test involves six pre-tensioned concrete prisms with the same prestressing tendons and concrete mixture that is used in the concrete ties, except that the edge distance for the prisms is reduced by approximately 25 percent. If this reduction in edge distance results in longitudinal splitting cracks along the prestressing tendons, then the system (tie design and material selection) may be susceptible to concrete end-splitting cracks. In this case, changes to the design and/or material selection should be made prior to mass production of ties.

2021 ◽  
Vol 41 ◽  
pp. 75-84
Author(s):  
Adrijana Savić ◽  
Robert J. Peterman ◽  
B. Terry Beck

Prestressed concrete ties could develop end-splitting cracks along tendons due to lateral bursting stresses. The lateral bursting stresses can form due to Hoyer effect (change in diameter of the prestressing tendons due to Poisson’s ratio), the jacking force in the tendons, geometrical features and indent characteristics of the prestressing tendons. End-splitting cracks can occur immediately after de-tensioning procedure in some cases, but they also can be developed during the first weeks after de-tensioning procedure due to sustained lateral stresses exerted by the prestressing tendons. The ability of concrete to resist these bursting stresses without cracking is primarily the function of the thickness of concrete cover, the type of concrete mixture used and the maximum compressive strength of the concrete. Qualification test will be great tool for prestressed concrete tie manufacturers to identify tie designs that may be susceptible to end-splitting cracks. This test was formally adopted as section 4.2.4 in Chapter 30 of the 2021 AREMA Manual for Railway Engineering.


Author(s):  
Adrijana Savic ◽  
B. Terry Beck ◽  
Aaron A. Robertson ◽  
Robert J. Peterman ◽  
Jeremiah Clark ◽  
...  

The bond between wire and concrete is crucial for transferring the stresses between the two materials in a prestressed concrete member. Furthermore, bond can be affected by such variables as thickness of concrete cover, type of pre-stressing (typically indented) wire used, compressive (release) strength of the concrete, and concrete mix. This work presents current progress toward the development of a testing procedure to get a clear picture of how all these parameters can ruin the bond and result in splitting. The objective is to develop a qualification test procedure to proof-test new or existing combinations of pre-stressing wire and concrete mix to ensure a reliable result. This is particularly crucial in the concrete railroad crosstie industry, where incompatible conditions can result in cracking and even tie failure. The goal is to develop the capability to readily identify compatible wire/concrete designs “in-plant” before the ties are manufactured, thereby eliminating the likelihood that defectively manufactured ties will lead to in-track tie failures due to splitting. The tests presented here were conducted on pre-tensioned concrete prisms cast in metal frames. Three beams (prismatic members) with different cross sections were cast simultaneously in series. Four pre-stressing wires were symmetrically embedded into each concrete prism, resulting in a common wire spacing of 2.0 inches. The prisms were 59.5in long with square cross sections. The first prism was 3.5 × 3.5in with cover 0.75in, the second was 3.25 × 3.25in with cover 0.625in and the third prism in series was 3.0 × 3.0 in with cover 0.50in. All pre-stressing wires used in these initial tests were of 5.32 mm diameter and were of the same wire type (indent pattern) denoted by “WE”, which had a spiral-shaped geometry. This is one of several wire types that are the subject of the current splitting propensity investigation. Others wire types include variations of the classical chevron shape, and the extreme case of smooth wire with no indentions. The wires were initially tensioned to 7000 pounds (31.14 KN) and then gradually de-tensioned after reaching the desired compressive strength. The different compressive (release strength) strength levels tested included 3500 psi (24.13 MPa), 4500psi (31.03 MPa), 6000 psi (41.37 MPa) and 12000psi (82.74MPa). A consistent concrete mix with water-cement ratio 0.38 was used for all castings. Geometrical and mechanical properties of test prisms were representative of actual prestressed concrete crossties used in the railroad industry. Each prism provided a sample of eight different and approximately independent splitting tests of concrete cover (four wire cover tests on each end) for a given release strength. After de-tensioning, all cracks that appeared on the prisms were marked, and photographs of all prism end surfaces were taken to identify the cracking field. During the test procedure longitudinal surface strain profiles, along with live-end and dead-end transfer lengths, were also measured using an automated Laser-Speckle Imaging (LSI) system developed by the authors. Both quantitative and qualitative assessment of cracking behavior is presented as a function of cover and release strength. In addition to the identification of whether cracking took place at each wire end location, measurements of crack length and crack area are also presented for the given WE wire type. The influence of concrete cover and release strength are clearly indicated from these initial tests. The influence of indented wire type (indent geometry) will also be discussed in this paper, along with a presentation of some preliminary test results. This work represents a successful first step in the development of a qualification test for validating a given combination of wire type, concrete cover, and release strength to improve the reliability of concrete railroad crosstie manufacturing.


2021 ◽  
Vol 39 ◽  
pp. 103-126
Author(s):  
Adrijana Savić ◽  
Aref Shafiei Dastgerdi ◽  
Terry Beck ◽  
Robert J. Peterman ◽  
Aaron Robertson

This research was focused on evaluating the influence of the different variables that affectsplitting in prestressed concrete members, particularly prestressed concrete ties. These include the thickness of concrete cover, release strength of concrete, and the type of wire indentation. Different combinations of these variables can affect splitting. This research was focused on finding the best possible material characteristics to avoid potential failures in the field. The objective of this research was to set the minimum value of the thickness of concrete cover, for different wire types used in manufacturing having given types of aggregate for concrete mixture. The importance of this research was to identify the best materials and the best system (concrete, wire, cover) designs before the production of prestressed concrete ties. Splitting test results presented in this research were focusedon three different thicknesses of concrete cover, three different concrete mixes, a 4500psi concrete release strength, and seven different indented wire types.


2021 ◽  
Vol 15 (4) ◽  
pp. 581-584
Author(s):  
Božo Bujanić ◽  
Matija Košak

The paper presents and describes the procedure of testing the materials that were available for the production of a multifunctional protective helmet. The procedure was carried out at the company Šestan-Busch d.o.o. as part of the EU project for the development and production of a multifunctional protective helmet. The test results showed that carbon fibers polymers as a composite material have the best impact absorption properties which was a key criterion for material selection. Other materials; glass fibers polymers, aramid fibers polymers and combinations in the test procedure showed worse results compared to the selected criterion.


2019 ◽  
Vol 159 ◽  
pp. 564-577 ◽  
Author(s):  
Leonardo Kessler Slongo ◽  
João Gabriel Reis ◽  
Daniel Gaiki ◽  
Pedro Von Hohendorff Seger ◽  
Sara Vega Martínez ◽  
...  

2021 ◽  
Vol 27 (4) ◽  
pp. 135-140
Author(s):  
Adrijana Savić ◽  
Robert Peterman

This research evaluates the influence of the different types of concrete mixture, using a shallow type of indentation of wire, having the different edge distance and compressive strength of concrete on splitting resistance in pretensioned concrete railroad sleepers. The investigated compressive strength of concrete was 4500psi. The research was experimental, and the part of this research was formally adapted in Arema StandardsforRailwayEngineering Chapter 30 section 4.2.4.


2020 ◽  
Vol 23 (8) ◽  
pp. 1521-1533 ◽  
Author(s):  
Chaojie Song ◽  
Gang Zhang ◽  
Wei Hou ◽  
Shuanhai He

This article presents an approach for investigating performance of prestressed concrete box bridge girders under hydrocarbon fire exposure. A three-dimensional nonlinear finite element model, developed in computer program ANSYS, is utilized to analyze the response of prestressed concrete box bridge girders under combined effects of fire exposure duration and simultaneous structural loading. The model validation is performed using a scaled prestressed concrete box girder exposed to ISO834 fire in furnace. Subsequently, the validated model is used to investigate fire performance of prestressed concrete box bridge girders through taking into consideration some variables, namely concrete cover thickness to prestressing strands, prestress degree, load level, fire exposure length, and position. Through a case study, results from numerical analysis show that concrete cover thickness to prestressing strands and load level has significant effect on fire resistance of prestressed concrete box bridge girders. Increasing prestress degree in prestressing strands can speed up the progression of deflection (sudden collapse) in prestressed concrete box bridge girder toward the final fire exposure stage. Reducing fire exposure length or preventing fire exposure on mid-span zone can highly enhance the fire resistance of simply supported prestressed concrete box bridge girders. Failure of prestressed concrete box bridge girder, under hydrocarbon fire exposure conditions, is governed by rate of deflection failure criterion in particular cases.


Sign in / Sign up

Export Citation Format

Share Document