Development of the cBN Electroplated End-Mill for High Precision Machining of CFRP

Author(s):  
Shinnosuke Yamashita ◽  
Tatsuya Furuki ◽  
Hiroyuki Kousaka ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
...  

Abstract Recently, the demand of carbon fiber reinforced plastics (CFRP) has been rapidly increased in various fields. In most cases, CFRP products requires a finish machining like cutting or grinding. In the case of an end-milling, burrs and uncut fibers are easy to occur. On the other hand, a precise machined surface and edge will be able to obtain by using the grinding tool. Therefore, this research has been developed a novel the cBN electroplated end-mill that combined end-mill and grinding tool. In this report, the effectiveness of developed tool was investigated. First, the developed tool cut the CFRP with side milling. As the result, the cBN abrasives that were fixed on the outer surface of developed tool did not drop out. Next, the end-milled surface of CFRP was ground with the developed tool under several grinding conditions based on the Design of Experiment. Consequently, the optimum grinding condition that can obtain the sharp edge which does not have burrs and uncut fibers was found. However, surface roughness was not good enough. Thus, an oscillating grinding was applied. In addition, the theoretical surface roughness formula in case using the developed tool was formularized. As the result, the required surface roughness in the airplane field was obtained.

2021 ◽  
Vol 15 (1) ◽  
pp. 4-16
Author(s):  
Shinnosuke Yamashita ◽  
Tatsuya Furuki ◽  
Hiroyuki Kousaka ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
...  

Recently, carbon fiber reinforced plastics (CFRP) have been used in various applications such as airplanes and automobiles. In CFRP molding, there are unnecessary portions on the outer area. Therefore, a machining process is required to remove them. Cutting and grinding are conventionally used in the finish machining of CFRPs. End-milling allows the removal of most of these portions. However, uncut fibers easily occur during end-milling. In contrast, a precise machined surface and edge are easily obtained using a grinding tool. Therefore, this research has developed a novel cubic boron nitride (cBN) electroplated end-mill that combines an end-mill and a grinding tool. This is a versatile tool that can cut and grind CFRPs by changing the direction of rotation of the tool. In this study, the effectiveness of the developed tool is investigated. First, the developed tool machined the CFRP by side milling. Consequently, cBN abrasives that were fixed on the outer surface of the developed tool did not detach in certain cutting conditions. Next, in order to generate a sharp edge on the CFRP and restrict the increase in the CFRP temperature with the cBN electroplated end-mill, the optimum abrasive size and grinding condition were investigated through the design of experiments. Moreover, the effectiveness of the developed tool was verified by comparing it with a conventional tool. As a result, smaller burrs and uncut fibers were observed after final machining with the developed tool under the derived optimum condition than those with conventional tools. However, the desired surface roughness could not be achieved as required by the airline industry. Therefore, oscillating grinding was applied. In addition, the formula of the theoretical surface roughness while using the developed tool was derived using the theory of slant grinding. As a result, the oscillating condition that led to the required surface roughness was obtained by theoretical analysis. In addition, the required value for the airline industry was achieved by oscillating grinding.


1970 ◽  
Vol 2 (1) ◽  
Author(s):  
A.K.M.N. Amin, M.A. Rizal, and M. Razman

Machine tool chatter is a dynamic instability of the cutting process. Chatter results in poor part surface finish, damaged cutting tool, and an irritating and unacceptable noise. Exten¬sive research has been undertaken to study the mechanisms of chatter formation. Efforts have been also made to prevent the occurrence of chatter vibration. Even though some progress have been made, fundamental studies on the mechanics of metal cutting are necessary to achieve chatter free operation of CNC machine tools to maintain their smooth operating cycle. The same is also true for Vertical Machining Centres (VMC), which operate at high cutting speeds and are capable of offering high metal removal rates. The present work deals with the effect of work materials, cutting conditions and diameter of end mill cutters on the frequency-amplitude characteristics of chatter and on machined surface roughness. Vibration data were recorded using an experimental rig consisting of KISTLER 3-component dynamometer model 9257B, amplifier, scope meters and a PC.  Three different types of vibrations were observed. The first type was a low frequency vibration, associated with the interrupted nature of end mill operation. The second type of vibration was associated with the instability of the chip formation process and the third type was due to chatter. The frequency of the last type remained practically unchanged over a wide range of cutting speed.  It was further observed that chip-tool contact processes had considerable effect on the roughness of the machined surface.Key Words: Chatter, Cutting Conditions, Stable Cutting, Surface Roughness.


2011 ◽  
Vol 486 ◽  
pp. 91-94 ◽  
Author(s):  
Jabbar Abbas ◽  
Amin Al-Habaibeh ◽  
Dai Zhong Su

Surface roughness is one of the most significant parameters to determine quality of machined parts. Surface roughness is defined as a group of irregular waves in the surface, measured in micrometers (μm). Many investigations have been performed to verify the relationship between surface roughness and cutting parameters such as cutting speed, feed rate and depth of cut. To predict the surface produced by end milling, surface roughness models have been developed in this paper using the machining forces by assuming the end mill cutter as a cantilever beam rigidly or semi- rigidly supported by tool holder. An Aluminium workpiece and solid carbide end mill tools are used in this work. Model to predict surface roughness has been developed. Close relationship between machined surface roughness and roughness predicted using the measured forces signals.


2014 ◽  
Vol 493 ◽  
pp. 546-551 ◽  
Author(s):  
Safian Sharif ◽  
Habib Safari ◽  
Sudin Izman ◽  
Denni Kurniawan

The surface quality generated when high speed dry end milling (HSDEM) Ti-6Al-4V-ELI titanium alloy with coated and uncoated carbide tools were investigated. Evaluation was conducted using TiAlN+TiN coated and uncoated cemented carbide tools under different high cutting speeds and feed rates conditions. Surface roughness and cutting forces were measured when using new tools. The milled surface quality and corresponding alteration were characterized through electron microscopy. Within the investigated conditions high quality surface finish was obtained on the machined surface. Increasing cutting speed from 200 to 300 m/min during the process improved the surface finished particularly under lower feed rates. In term of generated surface quality, uncoated H25 grade carbide tools out performed coated F40M grade specifically at the higher cutting conditions. The main damages observed after HSDEM on the surface for all machining conditions contain redeposited materials, feed marks, and tool edge marks. Under both tested feed rates the resultant cutting force decreased by increasing the cutting speeds and uncoated carbide tools provide the lower cutting forces compared to coated types.


2009 ◽  
Vol 407-408 ◽  
pp. 714-717 ◽  
Author(s):  
Yoshio Mizugaki ◽  
Kazuki Takafuji ◽  
Koichi Kikkawa

This paper describes the cutting characteristics of aluminum alloys in dry end milling experimentally. The tested materials are A1050, A2017, A2024, A5025 and A7075. The cutter is a flat end mill of Co-cemented High Speed Steel with the diameter of 20 mm. Through the experimental results of side milling, the following three aspects have been found out. Firstly, as to the machining error, A1050 showed smaller machining error than 15 μm in the cutting speed rage from 62.8 m/min to 251.3 m/min. Other Aluminum alloys showed greater values. Secondly, as to the cutting force, those of aluminum alloys except A2017 were generally proportional to their material hardness. The cutting forces of A1050 and A5052 were constant over the whole range of cutting speed. Thirdly, as to the machined surface roughness, A7075 showed the smallest surface roughness among the all materials with its arithmetical mean roughness Ra under 0. 2 µm and with its maximum height of profile Rz under 1 μm. The machined surface roughness of A2017 varied widely. Through the visual inspection of machined surface, A2017 and A2024 showed picked surface as generated by a built-up edge. This document explains and demonstrates how to prepare your camera-ready manuscript for Trans Tech Publications. The best is to read these instructions and follow the outline of this text. The text area for your manuscript must be 17 cm wide and 25 cm high (6.7 and 9.8 inches, resp.). Do not place any text outside this area. Use good quality, white paper of approximately 21 x 29 cm or 8 x 11 inches (please do not change the document setting from A4 to letter). Your manuscript will be reduced by approximately 20% by the publisher. Please keep this in mind when designing your figures and tables etc.


2015 ◽  
Vol 1115 ◽  
pp. 51-54 ◽  
Author(s):  
A.K.M. Nurul Amin ◽  
A.A. Che Omar ◽  
M.A.Mohammed Kamal ◽  
Mahmoud M.A. Nassar ◽  
N.F. Mohd Zaib ◽  
...  

Soda lime glass is used extensively in camera lens, micro gas turbines, light bulbs, tablewares, optics, and chemical apparatus owing to its high hardness, excellent optical properties, and good corrosion and chemical resistance. Such applications of soda lime glass demand high machining and finishing precision. On the other hand, machining of glass poses significant challenges due to its inherent brittleness. The process of removal of material from glass, if not done in ductile mode, can generate subsurface cracks and brittle fractures which have adverse effects on its functionality. This research investigates the high speed micro-end milling of soda lime glass in order to obtain ductile regime machining. It has been found by other researchers that ductile mode machining can avoid sub-surface cracks and brittle fractures. However, in ductile mode machining, the gummy chips settle permanently on the machined surface affecting adversely the surface finish. In order to avoid such chip settlement, compressed air was directed using a special air delivery nozzle to blow away the resultant gummy chips, thereby preventing them from settling on the machined surface. Response surface methodology (RSM) and a commercial NC end mill were used to design and perform the machining runs, respectively. Machining was done using: high spindle speeds from 30,000 to 50,000 rpm, feed rates from 5 to 15 mm/min, and depth of cuts from 3 to 7 μm. Three different diameter carbide tools were used: 0.5, 1, and 2 mm. A surface profilometer was used to analyze the surface roughness of the resultant machined surface. Subsequently, the data was used for finding the best combination of cutting parameters required to obtain the lowest surface roughness. The results demonstrate that high speed machining is a viable option for obtaining ductile regime machining and generating machined surfaces with very low surface roughness in the range of 0.08μm – 0.22 μm, using 0.5 mm carbide end mill cutter.


Author(s):  
Issam Abu-Mahfouz ◽  
Amit Banerjee ◽  
A. H. M. Esfakur Rahman

The study presented involves the identification of surface roughness in Aluminum work pieces in an end milling process using fuzzy clustering of vibration signals. Vibration signals are experimentally acquired using an accelerometer for varying cutting conditions such as spindle speed, feed rate and depth of cut. Features are then extracted by processing the acquired signals in both the time and frequency domain. Techniques based on statistical parameters, Fast Fourier Transforms (FFT) and the Continuous Wavelet Transforms (CWT) are utilized for feature extraction. The surface roughness of the machined surface is also measured. In this study, fuzzy clustering is used to partition the feature sets, followed by a correlation with the experimentally obtained surface roughness measurements. The fuzzifier and the number of clusters are varied and it is found that the partitions produced by fuzzy clustering in the vibration signal feature space are related to the partitions based on cutting conditions with surface roughness as the output parameter. The results based on limited simulations are encouraging and work is underway to develop a larger framework for online cutting condition monitoring system for end milling.


2013 ◽  
Vol 332 ◽  
pp. 270-275 ◽  
Author(s):  
Tadeusz Mikolajczyk

Paper shows system to surface shape and quality control in machining using industrial robot. To surface control videooptical methods were used. Surface shape was controlled using the special reverse engineering system. To surface roughness measure machined surface reflectivity method was used. Used own constructions non contact system was equipped with red laser light and USB camera. Wrist of robot was equipped with grinding tool. In paper shows some algorithms of presented processes. Shown too examples of experiments results in surface roughness measure in start end of grinding process. First trials of presented system shows possibility to build smart machining system for finishing of surface with unknown shape.


Author(s):  
Hirohisa Narita

Abstract An optimum experimental condition, which realize good surface roughness in cross direction both contour and scanning lines, for radius end mill against some inclined surfaces is obtained and some features is these cutting processes is discussed in this paper. The optimum experimental condition, which consists of cutting type (or feed direction), spindle speed, feed rate, depth of immersion, inclination angle, corner radius of end mill and cross feed, is obtained and the influence degree of these parameters is calculated by using Taguchi method. The experiment is carried out based on L18 orthogonal array. Based on the influence degree and geometric contact status due to unique shape of radius end mill, some feature of radius end milling is introduced. As a result of the contour line machining, a scallop height is very influenced by the inclination angle and the corner radius, and surface machined by bottom edge must not be remained. Regarding the scanning line machining, “go-up” is good for the feed direction. Big corner radius is also suitable because side edge does not contact to workpiece. In other words, the cutting force in radial direction becomes small. Furthermore, the surface roughness of the scanning line machining is smaller than the one of the contour line machining.


2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Yunn-Shiuan Liao ◽  
Tsung-Hsien Li ◽  
Yi-Chen Liu

Abstract Application of liquid carbon dioxide to improve cutting performance in micro-end milling of Ti-6Al-4V titanium alloy was proposed in this study. It was found that the machined roughness decreased with the cutting speed as observed in the conventional cutting, when a 0.5 mm diameter end milling cutter was used in dry cutting. But, the tiny and shattered chips produced by the use of 0.3 mm diameter cutter could adhere on the machined surface and deteriorate surface finish, if the cutting speed was higher than 40 m/min. Cutting temperature was effectively decreased by applying liquid carbon dioxide during micromilling, which in turn reduced the amount of chips adhering on the machined surface and lowered flank wear. The surface roughness Ra at a cutting speed of 70 m/min was improved from 0.09 μm under dry cutting to 0.04 μm under the liquid carbon dioxide assisted cutting condition. And there were no flank wear and very few burrs left on the machined surface for the condition used in the experiment. The height of the burrs was only 25% of that under dry cutting. More, minimum quantity lubrication (MQL) was proposed to be applied together with the liquid carbon dioxide to enhance lubrication effect. It was noted that the machined surface roughness was further decreased by 15% as compared with that when the liquid carbon dioxide was applied alone. The height of burrs was reduced from 32 μm to 16 μm.


Sign in / Sign up

Export Citation Format

Share Document