Numerical Simulation and Optimization of Heat Transfer in Microchannel by Implementing Nonuniform Electrokinetic Forces

Author(s):  
V. Esfahanian ◽  
F. Kowsary ◽  
N. Noroozi ◽  
M. Rezaei Barmi

The increasing power dissipation and decreasing dimensions of microelectronic devices have emphasized the demand for extremely efficient compact cooling technology. Microchannel heat sinks are of particular interest due to high rates of heat transfer, which have become known as one of the effective cooling technologies. In the present work, numerical simulation of incompressible flow in two dimensional microchannels by implementing nonuniform electrokinetic forces is performed using finite volume method. The velocity field and the heat transfer rate are influenced by the wall potential variations through the microchannel. Nondimensional parameters of heat transfer and fluid flows, Debay Huckel length, microchannel size and wall charge potential distribution, have major roles in this investigation. For fixed values of Reynolds number and microchannel size, the patterns of wall potentials are optimized to enhance the heat transfer rate. Velocity profiles are computed and temperature distribution and Nusselt number are obtained for uniform wall heat flux boundary condition. Average and local Nusselt numbers are illustrated for different wall potential configurations and Reynolds number. Velocity vectors and pressure drop are presented for different zeta potentials and Reynolds numbers. Finally, results of nonuniform electrical force are compared to uniform ones.

Author(s):  
Pornchai Nivesrangsan ◽  
Somsak Pethkool ◽  
Kwanchai Nanan ◽  
Monsak Pimsarn ◽  
Smith Eiamsa-ard

This paper presents the heat transfer augmentation and friction factor characteristics by means of dimpled tubes. The experiments were conducted using the dimpled tubes with two different dimpled-surface patterns including aligned arrangement (A-A) and staggered arrangement (S-A), each with two pitch ratios (PR = p/Di = 0.6 and 1.0), for Reynolds number ranging from 9800 to 67,000. The experimental results achieved from the dimpled tubes are compared with those obtained from the plain tube. Evidently, the dimpled tubes with both arrangements offer higher heat transfer rates compared to the plain tube and the dimpled tube with staggered arrangement shows an advantage on the basis of heat transfer enhancement over the dimpled tube with aligned arrangement. The increase in heat transfer rate with reducing pitch ratio is due to the higher turbulent intensity imparted to the flow between the dimple surfaces. The mean heat transfer rate offered by the dimpled tube with staggered arrangement (S-A) at the lowest pitch ratio (PR = 0.6), is higher than those provided by the plain tube and the dimpled tube with aligned arrangement (A-A) at the same PR by around 127% and 8%, respectively. The empirical correlations developed in terms of pitch ratio (PR), Prandtl number (Pr) and Reynolds number, are fitted the experimental data within ±8% and ±2% for Nusselt number (Nu) and friction factor (f), respectively. In addition, the thermal performance factors under an equal pumping power constraint of the dimple tubes for both dimpled-surface arrangements are also determined.


1999 ◽  
Vol 122 (2) ◽  
pp. 375-385 ◽  
Author(s):  
C. R. Hedlund ◽  
P. M. Ligrani

Local flow behavior and heat transfer results are presented from two swirl chambers, which model passages used to cool the leading edges of turbine blades in gas turbine engines. Flow results are obtained in an isothermal swirl chamber. Surface Nusselt number distributions are measured in a second swirl chamber (with a constant wall heat flux boundary condition) using infrared thermography in conjunction with thermocouples, energy balances, and in situ calibration procedures. In both cases, Reynolds numbers Re based on inlet duct characteristics range from 6000 to about 20,000. Bulk helical flow is produced in each chamber by two inlets, which are tangent to the swirl chamber circumference. Important changes to local and globally averaged surface Nusselt numbers, instantaneous flow structure from flow visualizations, and distributions of static pressure, total pressure, and circumferential velocity are observed throughout the swirl chambers as the Reynolds number increases. Of particular importance are increases of local surface Nusselt numbers (as well as ones globally averaged over the entire swirl chamber surface) with increasing Reynolds number. These are tied to increased advection, as well as important changes to vortex characteristics near the concave surfaces of the swirl chambers. Higher Re also give larger axial components of velocity, and increased turning of the flow from each inlet, which gives Go¨rtler vortex pair trajectories greater skewness as they are advected downstream of each inlet. [S0889-504X(00)00502-X]


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
M. Mohammadpour-Ghadikolaie ◽  
M. Saffar-Avval ◽  
Z. Mansoori ◽  
N. Alvandifar ◽  
N. Rahmati

Laminar forced convection heat transfer from a constant temperature tube wrapped fully or partially by a metal porous layer and subjected to a uniform air cross-flow is studied numerically. The main aim of this study is to consider the thermal performance of some innovative arrangements in which only certain parts of the tube are covered by metal foam. The combination of Navier–Stokes and Darcy–Brinkman–Forchheimer equations is applied to evaluate the flow field. Governing equations are solved using the finite volume SIMPLEC algorithm and the effects of key parameters such as Reynolds number, metal foam thermophysical properties, and porous layer thickness on the Nusselt number are investigated. The results show that using a tube which is fully wrapped by an external porous layer with high thermal conductivity, high Darcy number, and low drag coefficient, can provide a high heat transfer rate in the high Reynolds number laminar flow, increasing the Nusselt number almost as high as 16 times compared to a bare tube. The most important result of thisstudy is that by using some novel arrangements in which the tube is partially covered by the foam layer, the heat transfer rate can be increased at least 20% in comparison to the fully wrapped tube, while the weight and material usage can be considerably reduced.


1994 ◽  
Vol 116 (1) ◽  
pp. 29-38 ◽  
Author(s):  
P. J. Magari ◽  
L. E. LaGraff

An experimental investigation of wake-induced unsteady heat transfer in the stagnation region of a cylinder was conducted. The objective of the study was to create a quasi-steady representation of the stator/rotor interaction in a gas turbine using two stationary cylinders in crossflow. In this simulation, a larger cylinder, representing the leading-edge region of a rotor blade, was immersed in the wake of a smaller cylinder, representing the trailing-edge region of a stator vane. Time-averaged and time-resolved heat transfer results were obtained over a wide range of Reynolds number at two Mach numbers: one incompressible and one transonic. The tests were conducted at Reynolds numbers, Mach numbers, and gas-to-wall temperature ratios characteristic of turbine engine conditions in an isentropic compression-heated transient wind tunnel (LICH tube). The augmentation of the heat transfer in the stagnation region due to wake unsteadiness was documented by comparison with isolated cylinder tests. It was found that the time-averaged heat transfer rate at the stagnation line, expressed in terms of the Frossling number (Nu/Re), reached a maximum independent of the Reynolds number. The power spectra and cross-correlation of the heat transfer signals in the stagnation region revealed the importance of large vortical structures shed from the upstream wake generator. These structures caused large positive and negative excursions about the mean heat transfer rate in the stagnation region.


Author(s):  
C. R. Hedlund ◽  
P. M. Ligrani

Local flow behavior and heat transfer results are presented from two swirl chambers, which model passages used to cool the leading edges of turbine blades in gas turbine engines. Flow results are obtained in an isothermal swirl chamber. Surface Nusselt number distributions are measured in a second swirl chamber (with a constant wall beat flux boundary condition) using infrared thermography, in conjunction with thermocouples, energy balances, and in situ calibration procedures. In both cases, Reynolds numbers Re based on inlet duct characteristics range from 6000 to about 20000. Bulk helical flow is produced in each chamber by two inlets which ore tangent to the swirl chamber circumference. Important changes to local and globally-averaged surface Nusselt numbers, instantaneous flow structure from flow visualizations, and distributions of static pressure, total pressure, and circumferential velocity are observed throughout the swirl chambers as the Reynolds number increases. Of particular importance are increases of local surface Nusselt numbers (as well as ones globally-averaged over the entire swirl chamber surface) with increasing Reynolds number. These are tiad to increased advection, as well as important changes to vortex characteristics near the concave surfaces of the swirl chambers. Higher Re also give larger axial components of velocity, and increased turning of the flow from each inlet, which gives Görtler vnrtex pair trajectories greater skewness as they are advected downstream of each inlet.


2005 ◽  
Vol 2005 (1) ◽  
pp. 36-44 ◽  
Author(s):  
R. Ben-Mansour ◽  
L. Al-Hadhrami

Internal cooling is one of the effective techniques to cool turbine blades from inside. This internal cooling is achieved by pumping a relatively cold fluid through the internal-cooling channels. These channels are fed through short channels placed at the root of the turbine blade, usually called entrance region channels. The entrance region at the root of the turbine blade usually has a different geometry than the internal-cooling channel of the blade. This study investigates numerically the fluid flow and heat transfer in one-pass smooth isothermally heated channel using the RNGk−εmodel. The effect of Reynolds number on the flow and heat transfer characteristics has been studied for two mass flow rate ratios (1/1and1/2) for the same cooling channel. The Reynolds number was varied between10 000and50 000. The study has shown that the cooling channel goes through hydrodynamic and thermal development which necessitates a detailed flow and heat transfer study to evaluate the pressure drop and heat transfer rates. For the case of unbalanced mass flow rate ratio, a maximum difference of8.9% in the heat transfer rate between the top and bottom surfaces occurs atRe=10 000while the total heat transfer rate from both surfaces is the same for the balanced mass flow rate case. The effect of temperature-dependent property variation showed a small change in the heat transfer rates when all properties were allowed to vary with temperature. However, individual effects can be significant such as the effect of density variation, which resulted in as much as9.6% reduction in the heat transfer rate.


Author(s):  
Rajesh Kumar Panda ◽  
B. V. S. S. S. Prasad

Computational and experimental investigations on a flat circular disk are reported with a constant heat flux imposed on its bottom surface and a shower head of air jets impinging on the top surface. The shower head consists of a central jet surrounded by four neighboring perimeter jets. Lamp black flow visualization technique and computations using shear stress transport (SST) κ-ω turbulence model are employed to describe the complex interaction of the wall jets and the associated flow structure. Thermochromic liquid crystal measurement technique is used for surface temperature measurement. The formations of saddle point, nodal point of attachment, nodal point of separation, flow separation line and the up-wash flow are identified. It is observed that the flow topology is practically independent of Reynolds number within the investigated range but is significantly altered with the spacing between the jet orifice and the target surface. A strong correlation between the Nusselt number and the pressure distribution is noticed. Local variation of heat transfer rate with varying plate spacing to jet diameter ratio is significant but its effect on the area weighted average heat transfer rate is small. When compared with a single jet of equal mass flow rate and Reynolds number, the shower head jets provide higher heat transfer rate but require more power for pumping.


Author(s):  
Caner Senkal ◽  
Shuichi Torii

The flow and heat transfer characteristics of laminar dual circular jet impinging on a heating plate with inclined confinement surface has been investigated numerically. Governing equations in steady state are solved by a control volume based finite-difference method. The simulations have been carried out for Reynolds number (250≤Re≤418), the angle of inclination of the confined upper wall (0 ≤ θ ≤ 10), circular jet to annular jet velocity ratio (0≤VR≤2) and jet to target plate distances between 2D and 8D where D is the outer diameter of dual jet.SIMPLE algorithm was used to obtain velocity and temperature fields. Hybrid difference scheme is adopted for the discretized terms in the governing equations. The discretised equations are solved iteratively using the tridiagonal matrix algorithm line solver. Heat transfer performance along the heated wall is amplified with an increase in the velocity ratio and the Reynolds number. On the contrary, a substantial reduction in the heat transfer rate, for VR = 0.0, occurs in the stagnation zone, because the absence of the inner nozzle injection causes the recirculation in the corresponding region. The heat transfer rate in the stagnation zone is attenuated by increasing the jet nozzle to impinging plate distance. In particular, the effect of the inclination angle in the down-stream region, especially at the vicinity of outlet, is major then other effects Nusselt number distribution on the impingement plate is affected by inclined upper wall because inclination of the wall accelerates the exhaust flow. The streamwise reduction in the heat transfer rate for θ = 0° is suppressed by the presence of the inclined confinement surface and its value is intensified by the inclination angle.


Author(s):  
Todd Hahn ◽  
Bryant Deakins ◽  
Andrew Buechler ◽  
Sourabh Kumar ◽  
R. S. Amano

This paper describes the experimental analysis of the heat transfer rate within an internal passage of a typical gas turbine blade using varied internal geometries. This method of alteration, using rib turbulator’s within the serpentine cooling passages of a hollow turbine blade, has proven to drastically cool turbine blades more significantly than a smooth channel alone. Our emphasis is to determine which rib geometry will yield the highest heat transfer rate, which was examined in the form of a comparison between theoretical to experimental Nusselt numbers. For testing purposes, an enclosed 2 in. × 2 in. square Plexiglas channel was constructed to model an internal cooling passage within a turbine blade. Silicon heat strips, wrapped in copper foil, were placed on the bottom surface of the channel to ensure even heat distribution throughout. To measure internal surface temperatures, thermocouples were placed on the surface of heat plate as well as in the opening of the channel throughout. The four different rib geometries which were individually wrapped in copper foil were then placed on top of the heating element. To compare the rib geometry results with a control, a test was run with no ribs. To simulate turbulent air flow through the channel, a blower supplied velocities of 23.88 m/s and 27.86 m/s. These velocities yielded a Reynolds number ranging between 70,000 and 90,000. Final results were found in the form of the experimental Nusselt number divided by the theoretical Nusselt number, a standard when comparing surface heat transfer rates. The 60 degree staggered arrow geometry pointing away from the inlet and outlet (geometry 4) proved to create the highest heat transfer rate through the way it produced turbulent air flow. The average Nusselt number of this design was found to be 718.2 and 868.3 for 23.88 and 27.86 m/s respectively. From the calculated data it was found that higher Nusselt numbers were more prone to occur in higher air velocities.


Sign in / Sign up

Export Citation Format

Share Document