Side-Wall Surface Quality Assessment for Micro-End Milling

Author(s):  
Jeong Hoon Ko ◽  
Kah Chuan Shaw ◽  
Irving P. Girsang ◽  
Vinay Ravi ◽  
Jaspreet S. Dhupia

Mechanical micro-end milling helps in creating complex three dimensional structures without a restriction on work-piece material. So far, the surface quality assessment achieved in mechanical micro-end milling has mainly focused on the bottom milled surface of the machined part. In this paper, surface quality of the side-wall created by mechanical micro-end milling on stainless steel (SUS 304) and aluminum alloy (Al 6061) is studied. The surface quality thus achieved is assessed by considering three surface assessment factors namely average surface roughness, form error and burr height under various cutting conditions. The cutting parameters varied for machining were spindle speed, feed/tooth, radial depth of cut, and axial depth of cut. The optimal cutting conditions were evaluated for the three surface evaluation factors according to the material and cutting conditions. The surface roughness values were found to have a turning point at a particular spindle speed for both the materials and were affected by spindle speed, feed/tooth and axial depth of cut. The form error was observed to be lesser for higher axial depth of cut due to an increase in the relative tool stiffness. The burr formation was influenced mainly by feed/tooth with an increase in burr height due to the plowing effect at lowest feed rate and pushed uncut chip at highest feed rate.

2015 ◽  
Vol 1115 ◽  
pp. 12-15
Author(s):  
Nur Atiqah ◽  
Mohammad Yeakub Ali ◽  
Abdul Rahman Mohamed ◽  
Md. Sazzad Hossein Chowdhury

Micro end milling is one of the most important micromachining process and widely used for producing miniaturized components with high accuracy and surface finish. This paper present the influence of three micro end milling process parameters; spindle speed, feed rate, and depth of cut on surface roughness (Ra) and material removal rate (MRR). The machining was performed using multi-process micro machine tools (DT-110 Mikrotools Inc., Singapore) with poly methyl methacrylate (PMMA) as the workpiece and tungsten carbide as its tool. To develop the mathematical model for the responses in high speed micro end milling machining, Taguchi design has been used to design the experiment by using the orthogonal array of three levels L18 (21×37). The developed models were used for multiple response optimizations by desirability function approach to obtain minimum Ra and maximum MRR. The optimized values of Ra and MRR were 128.24 nm, and 0.0463 mg/min, respectively obtained at spindle speed of 30000 rpm, feed rate of 2.65 mm/min, and depth of cut of 40 μm. The analysis of variance revealed that spindle speeds are the most influential parameters on Ra. The optimization of MRR is mostly influence by feed rate. Keywords:Micromilling,surfaceroughness,MRR,PMMA


2013 ◽  
Vol 372 ◽  
pp. 364-368 ◽  
Author(s):  
Abdul Rahman Mohamed ◽  
Nur Atiqah ◽  
Mohammad Yeakub Ali ◽  
M.S.H. Chowdhury

This paper presents the effect of high speed micro end milling parameters on tool vibration during machining of poly (methyl methacrylate) (PMMA). The main focus is to achieve minimum tool vibration by controlling the cutting parameters; spindle speed, feed rate and depth of cut. An empirical model for tool vibration has been developed using Taguchi method. The orthogonal array, signal-to-noise ratio and analysis of variance revealed that high spindle speed is the most influential parameter to increase the level of tool vibration.


2021 ◽  
Vol 20 (2) ◽  
pp. 127-131
Author(s):  
A. I. Germashev ◽  
V. A. Logominov ◽  
S. I. Dyadya ◽  
Y. V. Kozlova ◽  
V. A. Krishtal

The paper presents the results of research on the dynamics of end milling of thin-walled work-pieces having complex geometric shapes. Since the milling process with shallow depths of cut is characterized by high intermittent cutting, the proportion of regenerative vibrations decreases, and the effect of forced vibrations on the dynamics of the process, on the contrary, increases. The influence of  axial depth of cut on the vibrations arising during processing, and roughness of the processed surface have been studied in paper.  The experiments have been carried out in a wide range of changes in the spindle speed at different axial cutting depths.  Vibrations of a thin-walled work-piece  have been recorded with an inductive sensor and recorded in digital form. Then an oscillogram has been used to estimate the amplitude and frequency of oscillations. The profilograms of the machined surface have been analysed. Roughness has been evaluated by the parameter Ra. The results have shown similar relationships for each of the investigated axial cutting depths. The worst cutting conditions  have been observed when the natural vibration frequency coincided with the tooth frequency or its harmonics. It is shown that the main cause of vibrations in high-speed milling  is forced rather than regenerative vibrations. Increasing the axial depth of cut at the same spindle speed increases the vibration amplitude. However, this does not significantly affect the roughness of the processed surface in cases when it comes to vibration-resistant processing.


2011 ◽  
Vol 325 ◽  
pp. 594-599 ◽  
Author(s):  
Hiroo Shizuka ◽  
Koichi Okuda ◽  
Masayuki Nunobiki ◽  
Yasuhito Inada

The effects of cutting conditions on the surface roughness in a micro-end-milling process of a mold material are described in this paper. Micro-end-milling operations were performed under different cutting conditions such as feed rate and depth of cut, in order to investigate the factors that had the greatest influence on the finished surface during micro-end-milling. It was revealed that the surface roughness begins to deteriorate when the radial depth of the cut exceeds the tool radius. In addition, it was found that this phenomenon is peculiar to micro-end-milling processes.


2012 ◽  
Vol 217-219 ◽  
pp. 2187-2193 ◽  
Author(s):  
Mohammad Yeakub Ali ◽  
A. R. Mohamed ◽  
Banu Asfana ◽  
Mohamed Lutfi ◽  
M. I. Fahmi

This paper presents the vibration and surface roughness issue of poly methyl methacrylate (PMMA) workpiece produced by micro end milling using integrated multi-process machine tools DT 110 (Mikrotools Inc., Singapore) with control parameter; spindle speed, feed rate, and depth of cut. The vibration was measured using accelerometer, DYTRAN Instrument and the average surface roughness Ra was measured using Wyko NT1100. The optimum solution for minimum average vibration is 64.3 Hz with spindle speed 3000 rpm, feed rate 2 mm/min, and depth of cut 1.5 μm. However, the optimum solution for minimum average surface roughness, Ra is 0.352 μm with spindle speed 2000 rpm, feed rate 2 mm/min, and depth of cut 1.5 μm. The micro end milling parameters are suitable to machine PMMA to get good precision surface roughness. The analysis revealed that the feed rate and depth of cut is the most influential parameter on vibration during machining process meanwhile for average surface roughness, Ra spindle speed is the most influential parameter.


Micromachines ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 494 ◽  
Author(s):  
Lijie Ma ◽  
Ian Howard ◽  
Minghua Pang ◽  
Zhankui Wang ◽  
Jianxiu Su

Micro-end-milling is a cutting technology that removes redundant material from machined workpieces by small-diameter end mills, and is widely used to manufacture miniature complex parts. During micro-end-milling, the cutting vibration caused by weak tool rigidity and high spindle speed is known as a key factor for decreasing machined quality and accelerating tool failure. This study reports on experiments of micro-end-milling of the straight groove for AISI 1045 steel. The waveform characteristics of acceleration vibration were revealed, the relationship between acceleration and milling parameters were analyzed and two types of relationship models were developed. The results show that, during micro-end-milling of the straight groove, the components of acceleration vibration from largest to smallest are in turn the transverse acceleration αY, the feed acceleration αX and the axial acceleration αZ. Compared with feed velocity vf and axial depth of cut ap, the spindle speed n has the highest influence on cutting vibration. The response surface model of acceleration vibration was shown to have a higher prediction accuracy compared to the power function model and is more suitable for the prediction and control of cutting vibration during micro-end-milling.


2009 ◽  
Vol 76-78 ◽  
pp. 514-519 ◽  
Author(s):  
Hideki Shibahara ◽  
Mikito Kumagai ◽  
Seido Kohda ◽  
Koichi Okuda

In this study, an approach by the feed rate control was applied for the improvement of form accuracy in the micro end milling process. In this approach called adaptive control constraint, the feed rate is controlled so that the cutting load is constantly kept and the deflection of tool does not occur. However, this method is not always effective in the micro cutting process that the influence of size effect cannot ignore. Therefore, the relationship between the cutting conditions and the form error in the micro end milling is experimentally investigated. The experiments on the machining of metal mold steel with the micro end mill are carried out and the formulation as function of the cutting conditions and the form error is identified by means of regression analysis. The performance of the feed rate control was validated based on experimental results. As the result, it was confirmed that the form accuracy was improved.


2017 ◽  
Vol 7 (1) ◽  
pp. 461-469 ◽  
Author(s):  
Imhade Princess Okokpujie ◽  
Omolayo M. Ikumapayi ◽  
Ugochukwu C. Okonkwo ◽  
Enesi Y. Salawu ◽  
Sunday A. Afolalu ◽  
...  

AbstractIn recent machining operation, tool life is one of the most demanding tasks in production process, especially in the automotive industry. The aim of this paper is to study tool wear on HSS in end milling of aluminium 6061 alloy. The experiments were carried out to investigate tool wear with the machined parameters and to developed mathematical model using response surface methodology. The various machining parameters selected for the experiment are spindle speed (N), feed rate (f), axial depth of cut (a) and radial depth of cut (r). The experiment was designed using central composite design (CCD) in which 31 samples were run on SIEG 3/10/0010 CNC end milling machine. After each experiment the cutting tool was measured using scanning electron microscope (SEM). The obtained optimum machining parameter combination are spindle speed of 2500 rpm, feed rate of 200 mm/min, axial depth of cut of 20 mm, and radial depth of cut 1.0mm was found out to achieved the minimum tool wear as 0.213 mm. The mathematical model developed predicted the tool wear with 99.7% which is within the acceptable accuracy range for tool wear prediction.


2015 ◽  
Vol 15 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Nandkumar N. Bhopale ◽  
Nilesh Nikam ◽  
Raju S. Pawade

AbstractThis paper presents the application of Response Surface Methodology (RSM) coupled with Teaching Learning Based Optimization Technique (TLBO) for optimizing surface integrity of thin cantilever type Inconel 718 workpiece in ball end milling. The machining and tool related parameters like spindle speed, milling feed, axial depth of cut and tool path orientation are optimized with considerations of multiple response like deflection, surface roughness, and micro hardness of plate. Mathematical relationship between process parameters and deflection, surface roughness and microhardness are found out by using response surface methodology. It is observed that after optimizing the process that at the spindle speed of 2,000 rpm, feed 0.05 mm/tooth/rev, plate thickness of 5.5 mm and 15° workpiece inclination with horizontal tool path gives favorable surface integrity.


Author(s):  
Issam Abu-Mahfouz ◽  
Amit Banerjee ◽  
A. H. M. Esfakur Rahman

The study presented involves the identification of surface roughness in Aluminum work pieces in an end milling process using fuzzy clustering of vibration signals. Vibration signals are experimentally acquired using an accelerometer for varying cutting conditions such as spindle speed, feed rate and depth of cut. Features are then extracted by processing the acquired signals in both the time and frequency domain. Techniques based on statistical parameters, Fast Fourier Transforms (FFT) and the Continuous Wavelet Transforms (CWT) are utilized for feature extraction. The surface roughness of the machined surface is also measured. In this study, fuzzy clustering is used to partition the feature sets, followed by a correlation with the experimentally obtained surface roughness measurements. The fuzzifier and the number of clusters are varied and it is found that the partitions produced by fuzzy clustering in the vibration signal feature space are related to the partitions based on cutting conditions with surface roughness as the output parameter. The results based on limited simulations are encouraging and work is underway to develop a larger framework for online cutting condition monitoring system for end milling.


Sign in / Sign up

Export Citation Format

Share Document