Investigation of Contact Characteristics of Long-Fiber Reinforced Plastic Gears Based on Observation With a High-Speed Camera

Author(s):  
Tomoki Otawa ◽  
Toshiski Hirogaki ◽  
Eiichi Aoyama

We also observed the dynamic contact state of gear meshing in operating conditions with a high-speed camera. The temperature distribution when driving was measured by thermography. Contact ratio is often used to show contact state, but there are currently no reports that describe the dynamic contact ratio of FRP gears although there are some reports on plastic gears. We therefore considered a contact ratio formula based on a new contact model that the dynamic real deflections of the gear tooth. The temperature distribution measurement was done from the side and the upper surface of the gear. The characteristics of heat generation on the surface of each gear tooth were analyzed, and the temperature distribution was analyzed according to the time and each point of the tooth. (1) FRP gears over heated as a result of driving by the metal gear for a long time. The rise in temperature was rapid and was compounded by heat dissipated from the metal gear. (2) The pitch point of the FRP gear tooth had the highest temperature. The reason for this is that the hysteresis heating is large. It is not easy for the gear to dissipate heat. (3) The temperature rose as a result of hysteresis heating. At high torque, the back surface contact and deflection of the teeth also increased because the gear became viscoelastic.

Author(s):  
Mike Cassata ◽  
Martin Morris ◽  
Jorge Abanto-Bueno

A testing facility has been developed to explore the failure modes of plastic gears. The overall goal is the prediction of gear tooth failure for a given set of operating conditions and to classify failure modes of plastic gears. The initial investigation is centered on the testing of plastic spur gears placed on a parallel-shaft drive train between a variable-speed, reversible DC motor and an eddy current dynamometer. The testing apparatus has been designed, fabricated, and refined to deliver consistent results. The dynamometer places two plastic spur gears in mesh, one being the drive gear and the other the driven. Most of the test gear pairs were injection molded, 40-tooth, 0.8 module gears. These gears were molded using Delrin™ 311DP, a polyoxymethylene polymer which is made by the DuPont Company. Optical encoders were attached to the input and output shafts to sense the shaft position providing a measurement of the deflection and wear of the gear teeth. In addition, an infrared temperature sensor was retrofitted to the dynamometer apparatus to measure the tooth-flank surface temperature. All of the tests where the gear flank temperature reached 250°F resulted in a catastrophic failure. The apparatus was also fitted with a high-speed digital camera system capable of sampling 1000 frames per second. The camera recorded the failure of the plastic gears.


2014 ◽  
Vol 747 ◽  
pp. 119-140 ◽  
Author(s):  
E. Vandre ◽  
M. S. Carvalho ◽  
S. Kumar

AbstractCharacteristic substrate speeds and meniscus shapes associated with the onset of air entrainment are studied during dynamic wetting failure along a planar substrate. Using high-speed video, the behaviour of the dynamic contact line (DCL) is recorded as a tape substrate is drawn through a bath of a glycerol/water solution. Air entrainment is identified by triangular air films that elongate from the DCL above some critical substrate speed. Meniscus confinement within a narrow gap between the substrate and a stationary plate is shown to delay air entrainment to higher speeds for a wide range of liquid viscosities, expanding upon the findings of Vandre, Carvalho & Kumar (J. Fluid Mech., vol. 707, 2012, pp. 496–520). A pressurized liquid reservoir controls the meniscus position within the confinement gap. It is found that liquid pressurization further postpones air entrainment when the meniscus is located near a sharp corner along the stationary plate. Meniscus shapes recorded near the DCL demonstrate that operating conditions influence the size of entrained air films, with smaller films appearing in the more viscous solutions. Regardless of size, air films become unstable to thickness perturbations and ultimately rupture, leading to the entrainment of air bubbles. Recorded critical speeds and air-film sizes compare well to predictions from a hydrodynamic model for dynamic wetting failure, suggesting that strong air stresses near the DCL trigger the onset of air entrainment.


Author(s):  
Tiancheng Ouyang ◽  
Rui Yang ◽  
Yudong Shen ◽  
Jingxian Chen ◽  
Nan Chen

The calculation of time-varying meshing stiffness caused by the alternate contacting of the gear tooth is an essential prerequisite to obtain real and effective nonlinear dynamic characteristics of the transmission system, so that the significance of which cannot be overemphasized. Accordingly, this work proposes an improved method to get meshing stiffness with taking fillet-foundation and gear rim deflection into consideration. Compared to the traditional potential energy method, the proposed method has more superior accuracy and performance, and its effectiveness has been further verified by the finite element analytical model. After that, an ideal eight degree of freedoms (DOFs) dynamic model of one stage mass-spring-damper involute spur gear, including lateral and torsional motions, is established to study the dynamic characteristics. Due to the complexity of the gear system operating conditions, we also investigate the influence of various parameters including hub bore radius, transmitting load, and rotation speed on dynamic features, especially in heavy-load and high-speed conditions. From the results, it can be concluded that these parameters will play a prominent role in the spur gear pair dynamic behaviors, providing a certain guidance for gear design.


2022 ◽  
pp. 1-13
Author(s):  
Jiangang Liu ◽  
Zhipeng Tong ◽  
Yu Gao-hong ◽  
Xiong Zhao ◽  
Haili Zhou

Abstract This study proposes a new non–circular gear transmission mechanism with an involute–cycloid composite tooth profile to realize the twice unequal amplitude transmission (In a complete rotation cycle of gear transmission, instantaneous transmission ratio has twice fluctuations obvious with unequal amplitude) of non–circular gears. The twice unequal amplitude transmission ratio curve was designed based on Fourier and polynomial functions, the change law of the Fourier coefficient on the instantaneous transmission ratio(In non-circular gear transmission, the transmission ratio changes with time, and the transmission ratio of non-circular gear should be instantaneous transmission ratio) was analyzed, and the pressure angle and contact ratio of the involute–cycloid composite tooth profile was calculated. The involute–cycloid composite tooth profile non–circular gear was machined by WEDM technology, while its meshing experiment was performed using high-speed camera technology. The results demonstrate that the instantaneous transmission ratio curve value obtained via the high-speed camera experiment was consistent with the simulation value of virtual software. Furthermore, the involute–cycloid composite tooth profile was applied in the seedling pickup mechanism of non–circular gear planetary gear train. The possibility of the application of the involute–cycloid composite tooth profile in the seedling pickup mechanism was verified by comparing the consistency of the theoretical and simulated seedling picking trajectory.


2016 ◽  
Vol 139 (5) ◽  
Author(s):  
Arda Cakmakci ◽  
Michael Knadler ◽  
Jong Guen Lee

Two pyrometric tools for measuring soot temperature response in fuel-rich flames under unsteady inlet airflow conditions are developed. High-speed pyrometry using a high-speed color camera is used in producing soot temperature distributions, with its results compared with those of global soot temperature response measured using a multiwavelength pyrometer. For the former, the pixel red, green, and blue (RGB) values pertaining to respective bandwidths of red, green, and blue filters are used to calculate temperature and for the latter, the emission from whole flame at 660 nm, 730 nm, and 800 nm is used to measure temperature. The combustor, running on jet-A fuel, achieves unsteady inlet airflow using a siren running at frequencies of 150 and 250 Hz and with modulation levels (root mean square (RMS)) 20–50% of mean velocity. Spatiotemporal response of flame temperature measured by the high-speed camera is presented by phase-averaged with average subtracted images and by fast Fourier transform (FFT) at the modulation frequencies of inlet velocity. Simultaneous measurement of combustor inlet air velocity and flame soot temperature using the multiwavelength pyrometer is used in calculating the flame transfer function (FTF) of flame temperature response to unsteady inlet airflow. The results of global temperature and temperature fluctuation from the three-color pyrometer show qualitative agreement with the local temperature response measured by the high-speed camera. Over the range of operating conditions employed, the overall flame temperature fluctuation increases linearly with respect to the inlet velocity fluctuation. The two-dimensional map of flame temperature under unsteady combustion determined using a high-speed digital color camera shows that the local temperature fluctuation during unsteady combustion occurs over relatively small region of flame and its level is greater (∼10% to 20%) than that of overall temperature fluctuation (∼1%).


Author(s):  
Fred B. Oswald ◽  
James J. Zakrajsed ◽  
Dennis P. Townsend ◽  
William Atherton ◽  
Hsiang Hsi Lin

Abstract Low-contact-ratio spur gears were tested in the NASA gear-noise rig to study the noise radiated from the top of the gearbox. The measured sound power from the gearbox top was obtained from a near-field acoustic intensity scan taken at 63 nodes just above the surface. The sound power was measured at a matrix of 45 operating speeds and torque levels. Results are presented in the form of a spectral speed map and as plots of sound power versus torque (at constant speed) and as sound power versus speed (at constant torque). Because of the presence of vibration modes, operating speed was found to have more impact on noise generation than torque level. A NASA gear dynamics code was used to compute the gear tooth dynamic overload at the same 45 operating conditions used for the experiment. Similar trends were found between the analytical results for dynamic tooth overload and experimental results for sound power. Dynamic analysis may be used to design high-quality gears with profile relief optimized for minimum dynamic load and noise.


2020 ◽  
Vol 197 ◽  
pp. 06019
Author(s):  
Valentino Cruccolini ◽  
Gabriele Discepoli ◽  
Federico Ricci ◽  
Carlo Nazareno Grimaldi ◽  
Alessio Di Giuseppe

In recent years, radio-frequency corona igniters have been extensively studied for their capability to ensure an effective ignition also in lean or diluted mixtures. Corona ignition is volumetric, with streamers coming from a star-shaped electrode. During the discharge, many radicals and excited species, able to speed up the combustion onset, are generated. At the same time, corona igniters are able to release a considerable amount of thermal energy inside the combustion chamber. The correct determination of such energy is crucial to evaluate the effectiveness of the ignition. In this work, corona discharge is experimentally evaluated inside an optical vessel. In this apparatus, the released thermal energy is measured by means of pressure-based calorimetry, and at the same time the natural luminosity of the streamers is recorded with a high-speed camera. The goal is to find a relationship between thermal energy release and streamers luminosity. Tests are performed using nitrogen as medium, at different pressure levels inside the vessel. The peak electrode voltage is varied to characterize the igniter behaviour in different operating conditions. The results of this work can be used to quantify the corona ignition capabilities to involve a wide amount of medium while releasing a high amount of thermal energy. A repeatability evaluation of streamer evolution is investigated as well.


Author(s):  
Fred B. Oswald ◽  
Brian Rebbechi ◽  
James J. Zakrajsek ◽  
Dennis P. Townsend ◽  
Hsiang Hsi Lin

Abstract Low-contact-ratio spur gears were tested in the NASA gear-noise rig to study gear dynamics including dynamic load, tooth bending stress, vibration, and noise. The experimental results were compared with a NASA gear dynamics code to validate the code as a design tool for predicting transmission vibration and noise. Analytical predictions and experimental data for gear-tooth dynamic loads and tooth-root bending stress were compared at 28 operating conditions. Strain gage data were used to compute the normal load between meshing teeth and the bending stress at the tooth root for direct comparison with the analysis. The computed and measured waveforms for dynamic load and stress were compared for several test conditions. These are very similar in shape, which means the analysis successfully simulates the physical behavior of the test gears. The predicted peak value of the dynamic load agrees with the measurement results within an average error of 4.9 percent except at low-torque, high-speed conditions. Predictions of peak dynamic root stress are generally within 10 to 15 percent of the measured values.


Sign in / Sign up

Export Citation Format

Share Document