Characteristics of air entrainment during dynamic wetting failure along a planar substrate

2014 ◽  
Vol 747 ◽  
pp. 119-140 ◽  
Author(s):  
E. Vandre ◽  
M. S. Carvalho ◽  
S. Kumar

AbstractCharacteristic substrate speeds and meniscus shapes associated with the onset of air entrainment are studied during dynamic wetting failure along a planar substrate. Using high-speed video, the behaviour of the dynamic contact line (DCL) is recorded as a tape substrate is drawn through a bath of a glycerol/water solution. Air entrainment is identified by triangular air films that elongate from the DCL above some critical substrate speed. Meniscus confinement within a narrow gap between the substrate and a stationary plate is shown to delay air entrainment to higher speeds for a wide range of liquid viscosities, expanding upon the findings of Vandre, Carvalho & Kumar (J. Fluid Mech., vol. 707, 2012, pp. 496–520). A pressurized liquid reservoir controls the meniscus position within the confinement gap. It is found that liquid pressurization further postpones air entrainment when the meniscus is located near a sharp corner along the stationary plate. Meniscus shapes recorded near the DCL demonstrate that operating conditions influence the size of entrained air films, with smaller films appearing in the more viscous solutions. Regardless of size, air films become unstable to thickness perturbations and ultimately rupture, leading to the entrainment of air bubbles. Recorded critical speeds and air-film sizes compare well to predictions from a hydrodynamic model for dynamic wetting failure, suggesting that strong air stresses near the DCL trigger the onset of air entrainment.

Author(s):  
B. R. Nichols ◽  
R. L. Fittro ◽  
C. P. Goyne

Many high-speed, rotating machines across a wide range of industrial applications depend on fluid film bearings to provide both static support of the rotor and to introduce stabilizing damping forces into the system through a developed hydrodynamic film wedge. Reduced oil supply flow rate to the bearings can cause cavitation, or a lack of a fully developed film layer, at the leading edge of the bearing pads. Reducing oil flow has the well-documented effects of higher bearing operating temperatures and decreased power losses due to shear forces. While machine efficiency may be improved with reduced lubricant flow, little experimental data on its effects on system stability and performance can be found in the literature. This study looks at overall system performance of a test rig operating under reduced oil supply flow rates by observing steady-state bearing performance indicators and baseline vibrational response of the shaft. The test rig used in this study was designed to be dynamically similar to a high-speed industrial compressor. It consists of a 1.55 m long, flexible rotor supported by two tilting pad bearings with a nominal diameter of 70 mm and a span of 1.2 m. The first bending mode is located at approximately 5,000 rpm. The tiling-pad bearings consist of five pads in a vintage, flooded bearing housing with a length to diameter ratio of 0.75, preload of 0.3, and a load-between-pad configuration. Tests were conducted over a number of operating speeds, ranging from 8,000 to 12,000 rpm, and bearing loads, while systematically reducing the oil supply flow rates provided to the bearings under each condition. For nearly all operating conditions, a low amplitude, broadband subsynchronous vibration pattern was observed in the frequency domain from approximately 0–75 Hz. When the test rig was operated at running speeds above its first bending mode, a distinctive subsynchronous peak emerged from the broadband pattern at approximately half of the running speed and at the first bending mode of the shaft. This vibration signature is often considered a classic sign of rotordynamic instability attributed to oil whip and shaft whirl phenomena. For low and moderate load conditions, the amplitude of this 0.5x subsynchronous peak increased with decreasing oil supply flow rate at all operating speeds. Under the high load condition, the subsynchronous peak was largely attenuated. A discussion on the possible sources of this subsynchronous vibration including self-excited instability and pad flutter forced vibration is provided with supporting evidence from thermoelastohydrodynamic (TEHD) bearing modeling results. Implications of reduced oil supply flow rate on system stability and operational limits are also discussed.


2020 ◽  
pp. 146808742092264
Author(s):  
Boni F Yraguen ◽  
Farzad Poursadegh ◽  
Caroline L Genzale

The engine combustion network recommends two different imaging-based diagnostics for the measurement of diesel spray ignition delay and lift-off length, respectively. To measure ignition delay, high-speed imaging of broadband luminosity, spectrally filtered to limit collected wavelengths below 600 nm, is recommended. This diagnostic is often referred to as broadband natural luminosity. For lift-off length measurements, the engine combustion network recommends imaging of OH* chemiluminescence. This diagnostic requires using an image-intensified camera to detect narrowly filtered light around 310 nm. Alternatively, it has been shown that the lift-off length can be measured using broadband natural luminosity, avoiding the need for an intensifier and ultraviolet-transmitting optics. However, care is needed in the collection and processing of this diagnostic to accurately isolate the chemiluminescence signal. Particularly, standard intensity thresholding techniques are not sufficient for isolating the chemiluminescence signal in broadband natural luminosity images. Thus, an intensity-histogram-based thresholding method is introduced. This article assesses the feasibility and practicality of measuring lift-off length using broadband natural luminosity using a detailed comparison to OH* chemiluminescence measurements. It is shown that lift-off length measurements using broadband natural luminosity are prone to user bias error in the optical setup and data processing, especially under moderate- to high-sooting conditions. We conclude that while OH* imaging provides the most reliable and accurate measurement of lift-off length at a wide range of ambient conditions, an intensity-histogram analysis can help discriminate the high-temperature chemiluminescence signal from others in a broadband natural luminosity image at higher-sooting operating conditions than demonstrated in current literature.


Author(s):  
Hiroki Kurahara ◽  
Keita Ando

Abstract We experimentally study the effects of viscosity on laser-induced shockwave in glycerol-water solution. A shockwave is generated through rapid expansion of plasma, which is induced by focusing a 6 ns pulse laser (532 nm) of energy fixed at 1.66 ± 0.22 mJ into 80, 90, 100 wt% glycerol-water solution. The shockwave propagation is recorded by an ultra-high-speed camera taken at 100 Mfps together with a pulse laser stroboscope. The photographs are used to determine the shock front position as a function of time, which allows for calculating the shock pressure according to the stiffened-gas type Rankine-Hugoniot relation. It turns out that the initial plasma pressure is reduced by having higher glycerol concentration (i.e., higher viscosity); therefore, wave steepening effect is deemphasized, resulting in a smaller decay rate.


2019 ◽  
Vol 22 (1) ◽  
pp. 284-294 ◽  
Author(s):  
FCP Leach ◽  
MH Davy ◽  
MS Peckham

As the control of real driving emissions continues to increase in importance, the importance of understanding emission formation mechanisms during engine transients similarly increases. Knowledge of the NO2/NOx ratio emitted from a diesel engine is necessary, particularly for ensuring optimum performance of NOx aftertreatment systems. In this work, cycle-to-cycle NO and NOx emissions have been measured using a Cambustion CLD500, and the cyclic NO2/NOx ratio calculated as a high-speed light-duty diesel engine undergoes transient steps in load, while all other engine parameters are held constant across a wide range of operating conditions with and without exhaust gas recirculation. The results show that changes in NO and NOx, and hence NO2/NOx ratio, are instantaneous upon a step change in engine load. NO2/NOx ratios have been observed in line with previously reported results, although at the lightest engine loads and at high levels of exhaust gas recirculation, higher levels of NO2 than have been previously reported in the literature are observed.


2004 ◽  
Vol 126 (1) ◽  
pp. 159-168 ◽  
Author(s):  
Hongqi Li ◽  
Yung C. Shin

This paper presents a new solution procedure for an integrated thermo-dynamic spindle model and validation results. Based on the model presented in Part 1 of this paper, a computer program has been developed to generate comprehensive solutions for high speed spindle-bearing systems, such as bearing stiffness, contact load and temperature, spindle dynamic characteristics and response, temperature distributions, and thermal expansions. The model and the solution procedure are modular such that solutions for different spindle set-ups can be easily generated by combining a given spindle model with different toolholder models. Validation test results for thermal and dynamic predictions are presented for four different spindle systems, including the thermal and dynamic validation tests on a specially constructed spindle testbed. The validation results show the model has accurate predictive capabilities for a wide range of operating conditions and various spindle designs.


2017 ◽  
Vol 140 (4) ◽  
Author(s):  
Cheng Liu ◽  
Wei Wei ◽  
Qingdong Yan ◽  
Brian K. Weaver ◽  
Houston G. Wood

Cavitation in torque converters may cause degradation in hydrodynamic performance, severe noise, or even blade damage. Researches have highlighted that the stator is most susceptible to the occurrence of cavitation due to the combination of high flow velocities and high incidence angles. The objective of this study is to therefore investigate the effects of cavitation on hydrodynamic performance as well as the influence of stator blade geometry on cavitation. A steady-state homogeneous computational fluid dynamics (CFD) model was developed and validated against test data. It was found that cavitation brought severe capacity constant degradation under low-speed ratio (SR) operating conditions and vanished in high-speed ratio operating conditions. A design of experiments (DOE) study was performed to investigate the influence of stator design variables on cavitation over various operating conditions, and it was found that stator blade geometry had a significant effect on cavitation behavior. The results show that stator blade count and leaning angle are important variables in terms of capacity constant loss, torque ratio (TR) variance, and duration of cavitation. Large leaning angles are recommended due to their ability to increase the cavitation number in torque converters over a wide range of SRs, leading to less stall capacity loss as well as a shorter duration of cavitation. A reduced stator blade count is also suggested due to a reduced TR loss and capacity loss at stall.


Author(s):  
C Arcoumanis ◽  
L N Barbaris ◽  
R I Crane ◽  
P Wisby

A cyclone-based filtration system has been developed and its potential for reduction of exhaust particulates in high-speed direct injection diesel engines is evaluated; the filtration efficiency of the four cyclones has been enhanced by means of particulate agglomeration induced by cooling in a heat exchanger. With this system installed in the exhaust pipe of a 2.5 litre direct injection engine, tests covering a wide range of speed, load and exhaust gas recirculation (EGR) fraction resulted in reductions of up to 77 per cent in emitted particulate mass flowrate. The dependence of the system's performance on engine operating conditions, EGR configuration and cyclone geometry is presented and discussed.


1986 ◽  
Vol 108 (3) ◽  
pp. 462-466 ◽  
Author(s):  
P. K. Gupta ◽  
J. F. Dill ◽  
J. W. Artuso ◽  
N. H. Forster

Motion of the cage in a high-speed angular contact ball bearing is experimentally investigated as a function of prescribed unbalance, up to operating speeds corresponding to three million DN. The predictions of cage motion made by the recently developed computer model, ADORE, are validated in the light of the experimental data. It is shown the cage whirl velocity is essentially equal to its angular velocity at all levels of unbalance and over a wide range of operating conditions. For the inner race guided turbine engine bearing, the cage/race interaction takes place directly opposite to the location of the unbalance and the severity of the interaction increases with the level of unbalance and the operating speed. ADORE predictions, over the entire range of unbalance and bearing operating conditions, are in very good agreement with the experimental observations.


2021 ◽  
Author(s):  
Argang Kazemzadeh

The coaxial mixers composed of a high-speed central impeller and a low-speed anchor have been recommended by the previous researchers for the mixing of highly viscous and non-Newtonian fluids. However, no study has been reported in the literature regarding the use of the coaxial mixing systems composed of two central impellers and an anchor in the agitation of complex fluids. Thus, the main objective of this study was to investigate the performance of coaxial mixers composed of two central impellers and an anchor in the agitation of the xanthan gum solution, which is a yield-pseudoplastic fluid, through electrical resistance tomography (ERT), the computational fluid dynamics (CFD), and design of experiments (DOE) combined with the response surface methodology (RSM). In the first stage of this study, the hydrodynamic performance of coaxial mixers, the single and double Scaba impellers in combination with an anchor impeller, was investigated in the mixing of yield-pseudoplastic fluids. Considering the mixing efficiency criteria, it was found that the double Scaba-anchor coaxial system was more efficient than the single Scaba-anchor coaxial mixer in the mixing of yield pseudoplastic fluids with regard to the mixing time and power drawn. In the second stage of this research project, the performances of three different coaxial mixers, namely, double Scaba-anchor coaxial (DSAC), double Rushton turbine-anchor coaxial (DRAC), and double pitched blade turbine-anchor coaxial (DPAC) mixers were assessed. It was found that the double Scaba-anchor coaxial (DSAC) mixer was more efficient system compared to the others at the same operating conditions. To evaluate the influence of the impeller spacing on the hydrodynamics of the double Scaba-anchor coaxial mixer, the lower impeller clearance and the spacing between two central impellers were changed within a wide range. The results demonstrated that a coaxial mixer with the impeller spacing of almost equal to the central impeller diameter was the most efficient configuration compared to the other cases. When the impeller spacing was varied, the merging flow and parallel flow patterns were observed. Finally, the hydrodynamic performances of different configurations of coaxial mixers composed of a wall scraping anchor impeller in combination with two different or identical central high-speed impellers were analyzed. The coaxial mixers utilized in this stage were the Scaba–Scaba-anchor (SSAC), Scaba-Rushton-anchor (SRAC), Rushton-Scaba-anchor (RSAC), Scaba-pitched blade-anchor (SPBAC), and pitched blade-Scaba-anchor (PBSAC). A new correlation was introduced for these complex configurations of the coaxial mixers by incorporating the Metzner-Otto constants (Ks) of the different types of the central impellers into the Reynolds number. The analysis of the collected data revealed that the Scaba-pitched blade-anchor coaxial (SPBAC) mixer was the most efficient mixing system in the mixing of the highly viscous non-Newtonian fluids.


2006 ◽  
Vol 129 (3) ◽  
pp. 843-849 ◽  
Author(s):  
Kyeong-Su Kim ◽  
In Lee

Air foil bearings are very attractive bearing systems for turbomachinery because they have several advantages over conventional bearings in terms of oil-free environment, low power loss, long life, and no maintenance. However, most of the developed machines using air foil bearings are limited to small and high-speed rotors of 60,000–120,000 rpm, since the increase in power of turbomachinery requires lower rotor speed and greater loading in bearings, which makes it difficult to use air foil bearings for large machines. In this paper, a 75 kW turboblower using air foil bearings is introduced, and the vibration characteristics of the machine have been investigated experimentally under a wide range of operating conditions, including compressor surge in the performance test. The machine is designed to be fully air lubricated and air cooled, and its operating speed is 20,000–26,000 rpm with maximum pressure ratio of 1.8. The results show that the air foil bearings offer adequate damping to ensure dynamically stable operation in the whole range.


Sign in / Sign up

Export Citation Format

Share Document