Laser Coating of HAp/Ti Nanoparticles on Metal Implants: Interfacial Bonding Strength, Chemical Analysis and Biocompatibility

Author(s):  
Martin Y. Zhang ◽  
Gary J. Cheng

In this paper, laser coating of hydroxyapatite (HAp) and Ti nanoparticles on Ti-6Al-4V implants was developed. An Nd:YAG laser was used to coat multilayers of HAp and Ti nanoparticles on implants. This coating process has the following advantages: (1) low temperature coating of nanoscale HAp is realized due to good sinterability of titanium nanoparticles; (2) high interfacial strength between layer and substrate because of the functional multilayer coating; (3) HAp nanoparticles provide better biocompability than micro-particles; (4) biphasic calcium phosphate (BCP) could be introduced, which has been reported to have excellent biocompatibility. In order to achieve these goals, careful selection of laser processing parameters is required. A multiphysics model is built and validated with experiments. This model is employed to determine the appropriate laser processing conditions. After laser processing, the features of the coated samples were characterized, including microstructures, chemical compositions, surface roughness, structure porosity and interfacial bonding strength. Qualitative cell culture studies with osteoblast-like UMR-105 cells were carried out to reveal the biocompatibility of so-coated implants. It is found that multilayer laser coated nanoHAp/Ti implants has beneficial biocompatibility, surface roughness, maintained chemical composition, porous microstructure and strong coating/substrate interfacial strength.

2014 ◽  
Vol 989-994 ◽  
pp. 177-180
Author(s):  
Hao Yang ◽  
Jian Hua Zhang ◽  
Guo Yan Sun ◽  
Yi Zhang

For the characteristic that the mechanical properties of resin composite are lower than cast iron, steel fibers are used to improve its properties in this paper. A weak interfacial bonding strength between steel fibers and resin indicates that steel fibers’ property cannot perform well in the polymer. In order to improve the interfacial bonding strength, four methods of surface treatment, phosphating, acid pickling, oxidation, and coupling are applied to steel fibers, and the corresponding pull-off tests are carried out to compare with untreated steel fibers. Research results show that the maximum interfacial bonding strength is increased by 45.1% after coupling treatment.


2022 ◽  
Vol 148 ◽  
pp. 107699
Author(s):  
M.H. Nie ◽  
S. Zhang ◽  
Z.Y. Wang ◽  
H.F. Zhang ◽  
C.H. Zhang ◽  
...  

2006 ◽  
Vol 55 (11) ◽  
pp. 6008
Author(s):  
Zhang Yong-Kang ◽  
Kong De-Jun ◽  
Feng Ai-Xin ◽  
Lu Jin-Zhong ◽  
Ge Tao

2011 ◽  
Vol 492 ◽  
pp. 61-65 ◽  
Author(s):  
Yuan Tian ◽  
Yi Wang Bao ◽  
De Tian Wan ◽  
Xiu Fang Wang ◽  
Zhi Ming Han

Laminated glass and photovoltaic laminated glass are widely used in architecture. The interfacial bonding strengths between poly(vinyl butyral) (PVB) and glass were investigated by the cross-bonding method from room temperature to -50 °C. The loading speed was 5 mm/min, and the cooling speed was about 0.5 °C/min. The testing sample was hold at each temperature for half an hour. It was revealed that the testing temperature had great effect on the bonding strength. At room temperature, the tensile bonding strength was 11.49 MPa and the shear bonding strength was 6.61 MPa. With the temperature decreased from RT to -50 °C, the tensile bonding strength was decreased by 66.81%, but the shear bonding strength was increased by 212.16%. From RT to -30 °C, the change rates of the tensile and shear bonding strength bonding strength were 65.57% and 172.68% respectively, only 3.61% and 14.48% from -30 °C to -50 °C. The mechanism for the bonding strength depended on testing temperatures from RT to -50 °C was also discussed.


Sign in / Sign up

Export Citation Format

Share Document